论文部分内容阅读
油脂资源绿色可再生,天然产量丰富,是生物质资源的重要组成部分。生物催化在区域选择性、副反应控制等方面具有传统的油脂加工工艺不可比拟的优势,因而成为近年来的研究热点。然而,生物催化剂高昂的市场售价,限制了该类技术的应用与发展。本课题组开发的Candidasp.99-125脂肪酶系列产品具有成本低,比酶活高,稳定性良好等优点,性价比优于同类国外产品。目前,以Candidasp. 99-125脂肪酶为核心的绿色催化平台技术日渐成熟,并已成功应用于多类脂肪酸酯类化合物的合成与生产。但Candida sp. 99-125脂肪酶针对于结构型酯类化合物(糖醇酯,甘油结构酯等)的催化特性及催化区域选择性尚有深入挖掘潜力,相关工艺尚未系统性开发并进一步优化。另外,近年来脂肪酶催化的不饱和双键环氧化反应也逐渐成为油脂改造的研究热点之一,Candida sp. 99-125脂肪酶在该方面的应用尚需发展。为进一步完善以Candida sp. 99-125脂肪酶为基础的绿色平台催化技术,本论文针对结构型类化合物产品及环氧油脂类产品,分别选取具有产品代表性的木糖醇脂肪酸酯、人乳脂肪替代结构酯(Human Milk Fat Substitutes,HMFS)、环氧脂肪酸为目标产物,进行了合成过程分析及工艺开发的研究。论文通过探讨Candida sp. 99-125脂肪酶的催化区域选择性;优化反应水含量及底物摩尔比等参数,构建合理的反应微环境;结合过程反应机理及副反应进程,调控反应温度、过程传质等参数;最终设计开发了Candida sp. 99-125脂肪酶针对于相应产品的高效催化工艺。具体研究内容如下:1.Candida sp. 99-125脂肪酶催化木糖醇脂肪酸酯合成中,首先建立了叔丁醇溶剂催化反应体系。通过预加热处理制备木糖醇-叔丁醇过饱和溶液,有效地提高反应体系中木糖醇浓度,从而提高木糖醇脂肪酸酯的转化率。在该体系中反应6 h后,木糖醇转化率约为70%,产品中1(5)-O-木糖醇单脂肪酸酯含量约95%.在此基础上,本研究建立了更为绿色的木糖醇酯无溶剂反应体系。通过木糖醇等摩尔分批5次加入,解决反应底物溶解问题。反应120 h后,糖醇酯的转化率为70%。其中1(5)-O-木糖醇癸酸单酯相对含量为16%,1,5-0-木糖醇癸酸二酯相对含量为60%,木糖醇1,2,5-0-癸酸三酯与1,3,5-O-木糖醇癸酸三酯相对含量为24%.同时发现,体系最终产品构型同脂肪酶的催化选择性无关,反应能量壁垒和体系热力学特性决定了最终产品的构型和组成。2.母乳脂肪中甘油三酯具有特定结构,其从头合成对催化选择性及反应过程控制要求较高,极具挑战性。本研究结合酶催化过程中酰基转移副反应的机理实现了对反应过程进行调控,并有效控制了催化过程的位置选择性,得到了针对Candida sp. 99-125脂肪酶催化合成HMFS的最佳工艺条件。催化得到的产品经分离纯化后,产品的酸价为2 mgKOH/g,甘油三酯中sn-2位棕榈酸占总棕榈酸比例的含量为52%-55%,棕榈酸甘油三酯在总甘油三酯中的含量为8.4%-9.6%,目标产品型甘油三酯含量为55-59%,产品过氧化值1.41-1.89meq/g,产品的各项指标均可满足并超过国家标准要求。3.不饱和脂肪酸的环氧化过程中,由于游离羧基的作用,使得该反应过程相对于脂肪酸酯的环氧化更加复杂,副反应更难于控制。本研究首先针对化学催化脂肪酸环氧化过程中,环氧基团开环副反应严重的问题,通过过程分析与优化,建立了过程动力学模型,通过分析各反应的速率及能量问题,得到了化学催化过程各类开环反应难以避免的结论。在化学催化研究的基础上,设计并优化了Candida sp.99-125脂肪酶催化的不饱和脂肪酸环氧化反应体系。以油酸为底物,在30 ℃条件下,反应10 h后,产物环氧值可达4.12%,环氧转化率76.58%,环氧化选择性0.98。以无患子油混合脂肪酸为原料,验证了该催化工艺的稳定性和可靠性。最终,从反应条件、反应机理、反应动力学方面,对比了化学催化甲酸原位环氧化和Candida sp. 99-125脂肪酶催化环氧化过程的区别,讨论了两种方法的优缺点。综上所述,论文通过研究Candida sp. 99-125脂肪酶在结构型酯类化合物产品催化转化过程中,酰基转移副反应的机理、历程、相关调控措施、策略;以及不饱和脂肪酸环氧化过程中开环副反应的影响及控制技术,过氧化物对脂肪酶的毒性问题及其解决方案;进一步完善了以Candidasp.99-125脂肪酶为基础的绿色生物催化平台技术,有利于提高生物催化技术在工业生产应用中的竞争力。