面向人机物融合应用的终端分级资源管理方法研究

来源 :华中科技大学 | 被引量 : 0次 | 上传用户:wangzhanglu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近些年来,物联网技术的飞速发展已经使得人、机、物三者的融合共生成为了一种不可逆转的趋势。人机物融合应用的发展现如今还面临着诸多挑战,如何在边缘场景下进行高效的资源调度是其中的关键问题之一。边缘场景下的人机交互应用会产生大量的数据,如果选择不在网络边缘侧处理这些数据,数据的传输过程将会给网络带宽带来极大的负担,同时数据传输所带来的高网络延迟也会让一些延迟敏感应用的使用体验感大大降低。但在网络边缘处理这些数据同样也会面临一些亟待解决的问题,例如边缘设备往往在计算力、存储以及续航上具有很大的局限性,而这些局限性会降低边缘设备所提供的服务质量。计算卸载(Offloading)的方法通常被用到这样的场景中来缓和边缘场景下有限计算资源与保证服务质量之间的矛盾。但当边缘设备的异构性问题与计算任务的复杂性问题同时出现的时候,传统的基于博弈论或是概率论的计算卸载方法无法有效的在多变的应用场景下合理分配复杂的计算任务,这就需要一种具备场景自适应能力的资源管理调度方法来高效的管理终端资源、进行任务调度。
  基于深度强化学习的双层计算卸载框架模拟了复杂动态边缘场景下的终端分级资源管理过程。其中,本地处理层负责产生数据、上传计算任务以及部分简单计算任务处理,计算卸载层接受复杂的计算任务,对这些任务进行整理和计算,有效降低本地处理层的计算负载;同时二次计算卸载机制通过利用其它区域的空闲资源,保障了计算卸载层的资源利用率与任务计算效率。计算卸载的过程被抽象为马尔科夫决策过程并使用深度强化学习算法异步演员-评论家算法(Asynchronous Advantage Actor-Critic,A3C)进行计算任务的卸载决策,以达到平衡负载、降低时延与能耗、提升应用服务质量的目的。大量的仿真实验通过构建不同任务密度的数据集在最大程度上模拟了现实的边缘任务产生过程,并在充足的连续时间段内针对本地计算模型、深度强化学习算法DeepQ-Network(DQN)、异步演员-评论家算法A3C以及双层计算卸载框架进行详细的综合对比试验。实验结果表明基于深度强化学习A3C的双层计算卸载框架在边缘场景下的资源管理上具备更好的场景自适应能力,并且通过终端资源分级以及合理的计算卸载有效降低了任务时延与计算负载,显著提升了应用的服务质量。
其他文献
乳腺癌是女性中最常见的癌症之一,早期的筛查以及诊断非常有意义。乳腺肿块是早期乳腺癌的主要表征之一,当前乳腺癌筛查最有效的手段是乳腺钼靶X线摄影检查。研究乳腺肿块分割算法,通过准确分割乳腺肿块,辅助医生判断乳腺肿块的良恶性,有助于提高患者的生存几率,具有重要的临床意义。  乳腺肿块通常具有形态大小多样且边缘不规则的特点。针对乳腺肿块形态大小多样的问题,设计并实现了基于U-Net模型的MU-Net模型
随着计算机技术和医学影像技术的发展,计算机辅助诊断治疗可以减轻医生的工作量和辅助医生诊断。人体肋骨包含了完整的腹部与胸部,具有相对稳定的形状,肋骨分割在医学上用途很广,可以检测骨头是否有骨折等异常,分段肋骨也可以作为参考物体,帮助定位其他结构,比如肝脏,心脏等,还可以为一些量化任务提供参考,比如肺体积的估计。  肋骨与肩胛骨、脊柱以及胸骨粘连较近且灰度值相似,传统的分割方法不能很好地处理骨头连接处
学位
尽管深度神经网络目前在许多方面展示出强大的能力,但由于其高能耗的特性,无法应用在一些计算资源有限的场景下。而脉冲神经网络作为第三代神经网络,是目前最拟合生物神经元机制的模型。相比深度神经网络,在脉冲神经网络所需的计算量和能耗远小得多。  目前,脉冲神经网络在图像识别和目标检测方面达到了较好的效果,但对于更复杂的计算机视觉任务相关研究却很少。作为计算机视觉领域最重要的任务之一,目标跟踪有较高的实时性
学位
目标检测技术是计算机视觉领域内的研究热点之一,其成果被广泛应用于智慧安防、自动驾驶等领域。随着深度学习技术的发展,目标检测技术取得了突破性的发展,但对于小目标和低清目标的检测精度仍有待改进,这使得目标检测技术在实际应用中依然有很大局限,所以如何设计能够准确检测小目标和低清目标的算法对于推广目标检测技术的应用有重大意义。  立足于目标检测技术对于小目标和低清目标检测不够准确的问题,通过研究突破相关技
学位
目标跟踪是计算机视觉领域最热门且最具挑战性的研究内容之一,在自动驾驶、视频监控等领域有着广泛的应用。近年来,基于深度学习的目标跟踪方法因其对深度架构的使用,更具表现力的深度特征等特点在目标跟踪领域引起了广泛的关注和研究。其中孪生区域候选网络SiamRPN从目标检测领域获取灵感,将孪生网络和区域候选网络相结合,在保证实时的同时,取得了较高的准确性。然而SiamRPN使用AlexNet作为骨干网络,受
学位
随着智能设备的普及应用,日常生活中产生了大量的碎片化短文本信息,例如,手机短信,社交动态分享,搜索语句,商品评论等。为了从这些海量的短文本信息中挖掘到更多的潜在商业价值,短文本分类任务受到越来越多的关注。由于短文本数据的独特属性,使其相较于长文本分类更加困难。一方面,短文本一般短小简洁,语法不规范,导致其特征稀疏,信息匮乏;另一方面,短文本更新速度快,数据量大,但是缺乏大量的带标签数据用于训练。 
随着全球互联网发展的加速,产生了海量蕴含丰富关系信息的文本数据,自动分类文本中的实体关系变得尤为重要。传统关系分类方法依赖大量标注数据且难以泛化到新关系类别中,而少样本学习则能够通过学习少量标注样本,快速在新类别上泛化,少样本关系分类因此开始受到学界关注。  深入研究了现有少样本关系分类算法并分析了各自优劣,其中图神经网络(Graph Neural Network, GNN)模型能较好地在支持集与
学位
流表更新在软件定义网络(Software Defined Network, SDN)中是十分频繁的,若不能保证流表规则的一致性更新,则可能导致网络中出现黑洞、传输环路、链路拥塞等情况,从而影响网络的性能。如何进行流表的一致性更新以确保数据包在更新期间的正常传输一直都是被广泛研究的问题。现有研究方案有的不能同时保证更新过程无黑洞、无环路、无链路拥塞,有的则太过于复杂会影响更新时间,有的则会消耗额外的
对于智能手机平台上的增强现实应用,结合手势这种直观的交互方式能给用户带来更自然的操作体验,对增强现实技术的发展很有意义。然而受限于手机的硬件性能和单目摄像头等条件,目前在安卓平台下还没有一套成熟且完备的解决方案来实现基于手势交互的增强现实系统。  本文设计并实现了一个应用在安卓平台上基于手势交互的增强现实系统,主要解决了手部位姿估计和动态手势识别两个技术难点,结合手势交互模块,实现了根据用户手势控
随着现代应用程序复杂度的不断提高,大规模的数据计算对程序和编程框架的并行性和可扩展性的要求越来越高。数据流编程语言COStream使用特定的文法描述计算任务,编译后将各任务均匀划分至不同的核上,能充分发挥多核平台的性能。但目前COStream语言的文法在编译阶段存在移入归约冲突,导致对运算符优先级的解析存在错误,且缺少内置的矩阵运算接口,影响了COStream数据流编程模型的可用性和易用性。  针