【摘 要】
:
动力学稳定性一直是近代物理学家、天文学家、应用数学家们的精神依托,其研究也持续了数个世纪之久,直至今天仍有大量的科学家沉浸其中。而Hamilton系统由于其有着力学、天文学
其他文献
2006年,Google首席执行官埃里克·施密特(Eric Schmidt)在搜索引擎大会上首次提出“云计算”的概念后,云计算便成为下一代互联网技术的研究热点。在云计算下,研究者关心的是
传统公钥密码体制中如果用户的密钥泄露,可以通过撤销用户的公钥来解决。但对基于身份的密码体制,用户的公钥就是用户唯一的身份信息,因此对公钥的细微修改或撤销都会引起用
重构是计算机视觉模拟人眼功能所需要完成的最后一步,即恢复景物的三维信息。它是一个研究非常活跃的重要领域,被广泛应用于工业检测、军事、医学、航空航天、娱乐等多个领域
资产定价模型一直以来在金融界备受青睐。它有效地将证券市场上的系统风险和非系统风险量化,并定义了投资组合收益率和各风险之间的关系,成功地给予无形的金融产品一个实质性
为了简化计算,传统的精算理论,假定利率是固定不变的。但是,寿险是长期性的经济行为,保险期间,政府政策、经济周期等因素都会造成利率的不确定性,由利率随机性产生的风险对保险公司
在新课改精神的指导下,我国小中高各院校开展了新一轮的教学改革.随着经济全球化趋势不断发展,英语在生活中的应用领域不断扩大,社会越来越重视英语教育发展.虽然在义务教育
1949年Tutte证明了不存在具有三次自由群的s-弧传递图(其中s≥6)。1981年,Weiss对此结论进行了进一步的推广,即证明了不存在度数大于等于3的8-弧传递图。从那以后,对于s-弧传递图(
一线的高中思想政治教师一般都有这样的感受:思想政治课越来越难教,学生越来越不想学,思想政治课本身的价值也越来越难体现。确实,当前高中思想政治课未能体现其应有的特色和
倒向随机微分方程在现实生活中有着广泛的应用,如随机最优控制,数学金融,金融市场中的博弈论等等.本文主要研究几类倒向随机微分方程及其应用. 本篇博士论文共分为四章.
孤立子的研究是非线性偏微分方程领域的一个重要分支,同时也是许多近现代学者研究的热门课题。在这篇论文中,我们研究了一类非线性偏微分方程。首先,利用广田双线性法和同宿测试