论文部分内容阅读
对延迟焦化工艺进行优化是应对原油重质化、劣质化,提高重质油加工水平的重要方法。采用计算机集总动力学模型进行工艺优化方便可靠,是工艺优化的有效途径。结构导向集总新方法以新的理念实现分子尺度的集总。用其构建动力学模型将提升模型的适用性和实用性。论文首先对延迟焦化原料油分子组成进行了模拟。在对原有结构向量进行适当修改的基础上,提出了代表延迟焦化原料油分子组成的92种单核种子分子和46种多核种子分子,共7004种分子集总。结合分子集总数据库和优化算法,论文确定了模拟计算重质油分子组成的新方法。该方法较好反映了重质油分子集总组成和含量。由此计算得到的重质油宏观性质和实际值接近。其次,论文采用92条反应规则描述延迟焦化反应行为,利用计算机软件和回归算法理论计算反应速率常数,以求解动力学微分方程组的形式构建了一个延迟焦化结构导向集总模型,并编写了该模型的工艺包和用户操作界面。该模型能较好反映焦化过程的真实分子反应行为,具有较好原料适应性和产物分布预测功能。为确保模型验证和后续计算的合理性,论文对DVS-JHJL-1130型延迟焦化实验室小试装置进行了可靠性验证。通过小试试验数据和中石化高桥分公司二套焦化装置的工业统计数据比对,证实了该小试试验装置的可靠性。在此基础上,论文利用该小试装置数据和工业统计数据验证了所建立模型在不同条件下对不同原料的预测准确性。结果表明,模型预测结果和小试试验结果以及工业统计数据均吻合良好,相对误差不超过10%。随后,论文利用所建立的模型分析了原料性质对延迟焦化液体产物收率的影响,并进行了延迟焦化原料组成调优。在480℃,0.15MPa,0.3循环比条件下,论文对不同原料渣油相互掺炼进行了结构导向集总模型计算和小试试验。比对结果表明:工业操作条件下,2#和4#原料渣油按7:3(质量)掺炼,液体产物收率相比两种原料渣油单独焦化之和提高1.22%。接着,论文利用所建立的模型考察了回收废道路沥青作为延迟焦化原料的可能性。结果表明:回收废道路沥青含有饱和分和芳香分,而且其中胶质沥青质具有可发生裂解反应的大长链,可以作为延迟焦化掺炼原料。但是其直接焦化的生焦率高达70%,易堵,难以满足延迟焦化工艺要求,因而需要和渣油掺炼。通过结构导向集总模型计算渣油掺炼回收废道路沥青共焦化的结果后发现:焦化液体产物收率随着掺入量的增加而减少,气体和焦炭收率增大;焦炭收率随着共焦化反应温度和反应时间的提升而下降,气体和液体收率上升。为避免装置堵塞和操作安全,论文认为利用延迟焦化实验室小试装置开展渣油掺炼回收废道路沥青共焦化实验时,回收废沥青掺入量的上限是20%(质量),共焦化反应温度和反应时间也需要进行一定控制。最后,论文在470℃,0.15MPa,零循环比条件下利用实验室小试装置开展了渣油掺炼回收废道路沥青共焦化实验。回收废道路沥青采用旋转薄膜烘箱试验法模拟,掺入量为20%。渣油选用4#原料渣油。比较掺炼前后的产物分布发现:和全渣油结果乘以80%的数据相比,掺炼后增产气体2.3%,增产液体2.91%,增产焦炭14.79%。经济效益估算表明,掺炼废沥青共焦化有利于环境保护和经济效益。掺炼产物中,焦化气体烯烃含量增加。焦化汽柴油性质和掺炼前相近。焦化蜡油和石油焦的品质有所下降。焦化蜡油中重组分、残炭、硫、氮和金属含量增多。石油焦灰分和硫含量增加。掺炼后的焦化蜡油仍符合催化裂化进料标准,掺炼后石油焦从三A级变为三B级,但仍能作为燃料处理。这既拓宽了延迟焦化原料,又为回收废道路沥青如何合理利用开辟了一条值得尝试的新途径。