AtCBF基因和ThNHX1基因的克隆和无选择标记植物表达载体的构建

来源 :安徽农业大学 | 被引量 : 0次 | 上传用户:lelefeng123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
农业生产中,植物的生长发育多受到各种环境因子的胁迫,诸如低温、干旱、盐碱等已成为主要的逆境胁迫因子,这些因素很大程度影响着农业的发展。CBF3(CRT/DRE-binding factor)蛋白就是这一类能调节低温相关基因的十分重要的转录激活因子。CBF3基因是在拟南芥中克隆并鉴定的转录激活因子,特异结合在DNA顺式调控元件DRE 上,DRE 包含COR基因簇,通过CBF3的不断超量表达来诱导COR基因表达。   逆境诱导型启动子Rd29A是能够受到环境中干旱、低温、高盐等因素的诱导后使下游目的基因进行大量表达的基因,构建逆境诱导型启动子驱动调控的目的基因植物表达载体,对于目的基因在植物中高效与实用的选择性表达有重要的意义。CBF3基因和Rd29A基因能在干旱、低温及高盐胁迫条件下调控COR基因表达,并在上述逆境胁迫信号传递中起重要作用。   当今对植物抗逆境中耐盐抗性的研究,大多集中于非耐盐植物中耐盐基因的研究,所以进展较慢。根据更深入的研究表明,在盐生植物中,有一种叫盐芥的耐盐植物较为适合耐盐性方面的研究。盐芥与拟南芥同为十字花科,其性质都具有以下相同特点:遗传特性、生活特性相似,具有植株较矮小、生长周期较短、种子数量多、自花传授粉、基因组较小、方便转化等特点。可以进一步发展盐芥作为一种新的模式植物系统进行相关性研究。   转基因植物中的除草剂或抗生素抗性标记基因的生态环境和食用安全性一直颇有争议,选择标记基因的存在严重地阻碍了转基因植物的商品化进程和转化技术本身的有效性,无选择标记策略提供了解决抗生素或除草剂等标记基因所引起疑虑的一种新思路。由此可见,怎样培育无选择标记转基因作物已成为近年来植物基因工程研究的重点之一。   本试验以拟南芥为研究材料,对其冷诱导相关的基因CBF3和逆境诱导型启动子Rd29A 进行研究,以盐芥为研究材料,对其Na+/H+逆向转运蛋白结果如下:   1.根据拟南芥的序列设计引物,通过PCR方法从植物拟南芥中克隆出冷诱导相关的基因CBF3和逆境诱导型启动子Rd29A。克隆的CBF3基因长750 bp,编码216个氨基酸,与GeneBank 公布的的序列相比对,核苷酸同源性达到100%,并利用生物信息学手段对其氨基酸序列、进化树等进行分析;启动子Rd29A 全长为1425bp,与已报道的该启动子序列比较,其核苷酸同源性为100%。   2.采用常规分子克隆技术,利用PMD18-T 载体,成功地将CBF3基因和Rd29A启动子构建到双元植物表达载体pCAMBIA1301中,成功构建pCAMBIA1301-Rd29A-CBF3 并通过冻融法将该重组质粒成功地导入根癌农杆菌菌株LBA4404中。   3.根据盐芥的序列设计引物,通过RT-PCR方法从植物盐芥中克隆出相关耐盐基因ThNHX1。克隆的ThNHX1基因长1761 bp,运用NCBI的ORF Finder 查询软件得出最长编码区1635bp,编码545个氨基酸,与已知的拟南芥的Na+/H+逆向转运蛋白(GenBank 登记号:NM_ 122597)具有94.4%的相似性,和其他植物的Na+/H+逆向转运蛋白也有比较高的相似性。   4.采用常规分子克隆技术,成功的剔除双元植物表达载体pCAMBIA1301中的筛选标记基因,并成功剔除其中的潮霉素筛选标记基因,构建了无筛选标记基因的植物表达载体pCAMBIA1301-Nohyg。并利用已克隆好的PMD18T-CBF3与PMD18T-ThNHX1 酶切连接,构建共转化表达载体pCAMBIA1301-Nohyg-CBF3与pCAMBIA1301-Nohyg-ThNHX1,正转化农杆菌LBA4404 转化烟草,以期获得转基因植株。
其他文献
目的:构建幽门螺杆菌(Helicobacter pylori,H.pylori)cag PAI中基因cagX缺失株,探讨该基因对cagY、cagW、cagN基因表达的影响、在CagA转运过程中的作用及对细胞GES-1 IL-8 mR
在植物生长发育过程中,如植物种子的萌发、叶片的衰老和果实的成熟等,乙烯发挥着非常重要的作用。乙烯生理作用最终是通过其信号转导途径实现的。本实验从甜瓜果实中成功克隆
会议
纳米蒙脱土在聚合物中的剥离分散性是制备高性能蒙脱土/聚合物纳米复合材料的关键。现有的研究多集中于纳米复合材料的制备方法和性能改善,不能很好地解释蒙脱土在聚合物中剥离
会议
纳米多孔金催化剂是近10年来新出现的一种催化剂,它的特点是内部具有5-50 nm的孔道结构,贯穿于整个催化剂。因此,该类催化剂具有较大的比表面积,而且其骨架结构非常稳定,便于反应后的回收再利用。关于纳米多孔金的催化的氧化已引起人们的关注,譬如甲醇被氧化为甲醛、一氧化碳被氧化为C02等。然而,至今未报道关于纳米多孔金催化氢气的加氢反应研究。本文以亚胺化合物的催化加氢反应为研究对象,研究了纳米多孔金催
二氧化氯是一种不稳定的氧化剂,应用极为广泛。它几乎是目前最好的消毒杀菌剂和最好的纤维漂白剂,在食品工业也有很好的应用前景。由于二氧化氯很不稳定,所以必须现用现制,因此其