【摘 要】
:
随着我国民用基础设施和大型建筑物的新建或修缮,对建筑物的结构健康监测、检测、质量评估以及对于现役结构的安全性能监测等问题已经引起相关部门的高度关注。特别是在围绕我国高速铁路相关的基础设施建设领域,因为高铁路基桥墩的沉降是引起轨道不平整性的第一诱因,加上高速铁路上千公里的跨度,不同的地质条件会产生差异沉降,而对于这种广延性的结构,进行人工监测是相当困难的。因此实现高铁路基沉降自动化监测,对保证高速铁
论文部分内容阅读
随着我国民用基础设施和大型建筑物的新建或修缮,对建筑物的结构健康监测、检测、质量评估以及对于现役结构的安全性能监测等问题已经引起相关部门的高度关注。特别是在围绕我国高速铁路相关的基础设施建设领域,因为高铁路基桥墩的沉降是引起轨道不平整性的第一诱因,加上高速铁路上千公里的跨度,不同的地质条件会产生差异沉降,而对于这种广延性的结构,进行人工监测是相当困难的。因此实现高铁路基沉降自动化监测,对保证高速铁路长期安全的运行具有重要的工程实践意义。高铁路基沉降自动化监测的难点在于空间上的大跨度和监测的高精度两方面的需求。传统的电学沉降监测系统,一方面容易受到牵引机车供电系统的电磁干扰,另一方面在大空间跨度内难以实现高精度的监测。目前常规的监测方法是在基岩处设立监测基准,使用经纬仪进行人工监测。这种方法可以达到10微米量级的监测精度,但是费时、费力难以获得全天候的测量数据,无法满足高铁安全运行的需要。所以,现实中急需一种高精度、抗电磁干扰的沉降监测手段。光纤传感器兼顾了抗电磁干扰和远距离测量的优点,本论文设计并实现了一种光纤低相干微米沉降传感器,并在实验室条件下对该系统的相关性能进行了较为深入的研究,最后在实践中证明该了系统可以获得微米级的沉降监测精度。论文的主要内容包括:1.提出了光纤低相干微米沉降传感器的基本原理,设计中将低相干迈克尔逊干涉仪与静力水准仪相结合。静力水准采用连通器原理,光纤液位传感器中充灌纯净水,将光纤液位传感器用水管连接起来,各个光纤液位传感器中的液位就与沉降相关。利用光纤液位传感器中液面自身的反射作为迈克尔逊干涉仪的一个测量臂,使用光学干涉方法来获得微米级的液位高度变化。2.针对建筑物在沉降发生时所伴随的倾斜因素,对该传感系统的光学和机械结构进行了抗倾斜优化,并研究和评估了系统的抗倾斜性能。经过模拟实验,其实验结果表明,在-5°到+5°的倾斜范围内,该传感系统可以正常工作。3.首次将所设计的光纤低相干微米沉降传感器应用到实际高铁环境中,在合肥到蚌埠高铁段近3个月的实际监测中,实现了微米尺度的沉降分辨。并根据现场要求,系统实现了 4G无线数据传输和远程控制等功能,良好的解决了系统运行中的异常掉电问题。为了克服高速列车运行产生的振动影响,系统中设计了自适应滤波程序,可以有效的移除了高速列车所产生的振动噪声。经过工程现场的实践检验,本系统基本上可以满足高速铁路局部不均匀沉降监测的需要。
其他文献
宏观磁流体不稳定性是等离子体大破裂的主要原因之一。例如,由等离子体压强梯度、等离子体电流以及高能量粒子(Energetic particles,EPs)驱动的电阻壁模(Resistive Wall Mode,RWM)、环向阿尔芬本征模(Toroidal Alfvén Eigenmode,TAE)等。RWM 不稳定性会限制等离子体高β的获得,从而限制能量增益因子的值。由快粒子驱动的TAE不稳定性则会
车载社交网络(VSN)是一个新兴的网络通信研究领域,其相关概念是从车载自组织网络(VANET)和移动社交网络(MSN)这两个不同的学科借鉴得到的。这一新兴网络为内容共享,数据广播和传递服务提供了新的研究方向。基于社交网络分析(SNA)的应用和方法,VSN可以利用网络实体的相互依赖性来进行今后应用的开发。VSN包含了具有相似目标的车辆,乘客和车辆虚拟社区中具有类似目标,兴趣或移动模式的通勤者的社交关
人工神经网络由于其超强的非线性映射能力,卓越的学习能力以及其广泛的用途,成为许多领域的研究热点.为了提高网络泛化能力,产生更经济的稀疏网络,克服梯度型神经网络学习算法收敛速度慢,容易过快陷入局部极小点,且易产生振荡现象的缺陷.为此本文主要研究带光滑L1/2正则项的批处理共轭梯度型学习方法.首先提出基于修正割线方程的共轭梯度法,并验证了该方法求解标准优化测试问题的有效性.其次提出双自适应参数的共轭梯
波浪破碎是海洋表面上一种常见的物理现象,同时也是海洋工程和非线性水波动力学领域中极其重要的研究方向。而波浪传播的多向性能够显著地影响波浪破碎的运动学和动力学特征,因此深入研究三维波浪破碎问题是非常重要的,并且也更具有实际应用价值。然而,由于三维波浪破碎的研究方法以及实验数据的采集手段并不成熟,导致目前有关三维波浪破碎的实验研究还很匮乏。为提高对三维波浪破碎现象的认识,本文提出研究双向传播波列相互作
2020年,突如其来的新冠肺炎疫情改变了每个人的生活,同时也撬动了教育、教学的变革。疫情不仅改变了原有的教学模式,也带来了研究视角的转变,变"微观"为"宏观",从"孤立"走向"整合"。在这场淘沙取金的浪潮中,重估课堂评价的作用,不禁让人想到布鲁姆在《教育评价》中指出的问题:"是选拔,还是发展?"在当下聚焦核心素养、关注学生全面发展的背景中,
本文旨在以高功率调制脉冲磁控溅射(Modulated Pulsed Power Magnetron Sputtering, MPPMS)、等离子体基离子注入(Plasma-Based Ion Implantation, PBⅡ)和等离子体基低能离子注入(Plasma-Based Low-Energy Ion Implantation, PBLEⅡ)三种脉冲等离子体工艺为对象,建立模型并数值研究脉冲
比例边界元法(SBM)是90年代提出和发展起来的一种半解析数值方法。该方法在求解无限域或者有奇异性的问题方面较有限元法更有效率,只需在边界上进行离散而与边界元法相比又不需要基本解。目前,比例边界元法已经有了很大的发展与应用,但是还没有比例边界元法关于粘弹性问题的研究报导,而在工程中经常要涉及到材料的粘弹性力学分析。比例边界元法在形成刚度矩阵时需要求解一个特征值问题,会导致计算量较大;涉及时域的粘弹
有限元法是20世纪力学领域最重大的成就之一。在五十多年的发展历程中,有限元法形成了深厚的数学力学基础,众多研究者构造了大批的各类单元,发展了成熟的静力学和动力学分析方法和软件,在各个领域得到了广泛的应用。在有限元方法中发展起来的各种单元列式中,拟协调元的基本思想对很多单元的构造具有启发性,该方法以“积分弱化”的方式放松了单元间协调性要求。拟协调单元构造方式简单,单元刚度阵显式表达,研究和构造拟协调
便携式电子设备和汽车产业的高速发展使得对于高效可再生能源存储设备的需求日益增强。二氧化锰和聚苯胺(PANI)作为赝电容电极材料因具有极高的理论电容量,价格经济,环境友好等特点,获得了广泛的研究。然而,内阻较高和循环稳定性较差等缺点限制了其作为电极材料在电化学方面性能的提高。另外,粘合剂和导电剂的添加同样会对电极材料产生影响。为了解决这些问题,本文的研究致力于在三维传导支架石墨烯泡沫上沉积MnO2/
金属和合金材料中原子间相互作用从本质上决定了这些材料的物理性质。原子间相互作用的势函数是进行经典分子动力学(MD)模拟、蒙特卡洛(MC)模拟等模拟的必备条件。然而,大量的金属或合金,因缺乏适合的势函数,导致对其各类性质进行模拟和研究时受到极大的限制。因此,发展准确、可靠的原子间相互作用势一直是凝聚态物理领域一个非常重要的课题。二十世纪八十年代,Daw和Baskes提出了适用于金属和合金体系的嵌入原