【摘 要】
:
基于单片微波集成电路(MMIC)技术的射频前端收发组件大量应用于无线通信、雷达等系统中。收发开关是射频前端的重要组成部分,其性能会对信号的接收发射产生直接影响,从而影响前端系统的整体性能。宽禁带第三代半导体材料氮化镓(GaN)以其击穿场强高和热导率高等特性,可应用于高功率、高性能毫米波前端电路。本文采用100nm硅基GaN HEMT工艺,设计面向5G毫米波应用的单刀双掷(SPDT)开关MMIC。本
论文部分内容阅读
基于单片微波集成电路(MMIC)技术的射频前端收发组件大量应用于无线通信、雷达等系统中。收发开关是射频前端的重要组成部分,其性能会对信号的接收发射产生直接影响,从而影响前端系统的整体性能。宽禁带第三代半导体材料氮化镓(GaN)以其击穿场强高和热导率高等特性,可应用于高功率、高性能毫米波前端电路。本文采用100nm硅基GaN HEMT工艺,设计面向5G毫米波应用的单刀双掷(SPDT)开关MMIC。本文首先介绍了射频开关的基础知识,对D01GH GaN工艺的高电子迁移速率晶体管(HEMT)器件以及无源器件的结构进行了分析。利用D01GH工艺的功率HEMT作为开关器件,设计了一款工作在24-30GHz的对称SPDT开关,测试结果显示插入损耗为1.2-1.5d B,隔离度为28-30d B,输入功率1d B压缩点大于27d Bm,芯片面积仅为1.08mm~2。其次,针对毫米波前端收发支路的不同性能需求,设计了两款非对称SPDT开关。利用断开支路加载效应以及短路枝节补偿技术提升了发射支路的带宽,在保证接收支路插入损耗性能可接受的情况下,着重优化发射支路插入损耗,折衷考虑插入损耗、隔离度与功率容量性能,版图后仿真结果表明:1)设计的并联非对称SPDT开关,在24-30GHz频率范围内,发射支路插入损耗低于0.7d B,发射端至接收端隔离度优于32d B,输入功率0.1d B压缩点大于34d Bm;接收支路插入损耗低于1.8d B,接收端至发射端隔离度优于14d B,输入功率0.1d B压缩点大于30d Bm。版图面积为1.35mm~2。2)设计的串并非对称SPDT开关,在24-30GHz频率范围内,插入损耗为低于0.8dB,发射端至接收端隔离度优于35d B,输入功率0.1d B压缩点大于33.5d Bm;接收支路插入损耗低于1.8d B,接收端至发射端隔离度优于11d B,输入功率0.1d B压缩点大于36d Bm。版图面积为1.4mm~2。最后研究了GaN对称以及非对称SPDT开关在毫米波前端中的应用,并完成了GaN毫米波集成前端中的开关设计。
其他文献
Black-Scholes模型是当前市场上应用最广泛的期权定价模型,波动率是模型中唯一的不能直接观察得到的参数,将市场上的期权真实价格代入Black-Scholes模型反推得出的波动率称之为隐含波动率。对同一时间期限,相同股价,对执行价格和隐含波动率进行拟合,并绘制曲线,会产生一个倾斜或微笑形状的曲线,该现象称之为隐含波动率微笑。隐含波动率微笑现象说明标准Black-Scholes期权定价模型存在
提高围护结构的热工性能是降低建筑能耗最有效的途径之一。受低纬度热带海洋环境影响,我国南海岛屿地区常年高温高湿,具有显著的极端热湿气候特征,当地围护结构的热工性能受到湿传递显著影响。然而,现有研究对极端热湿气候下的墙体内热湿传递机理揭示不足,湿传递对围护结构热工性能的影响规律尚未探明。为此,本研究以经典热湿传递理论为基础,建立并验证了针对当地气候下墙体内部热湿耦合传递的数学模型,应用新建模型对墙体热
弛豫铁电体具有优异的介电、压电性能,广泛应用于超声换能器、传感器、滤波器以及致动器等电子器件之中。铌镁酸铅-钛酸铅(PMN-PT)是一种典型的弛豫铁电体,是目前研究热点之一。2018年,Li发现Sm掺杂PMN-PT铁电陶瓷具有超高压电常数,可以产生大场诱应变效应。然而,对该材料场诱应变效应的研究尚不够详尽,如场诱应变温度稳定性及其内在机制。有基于此,本论文以PMN-PT陶瓷为研究对象,通过固相两步
随着网络电视用户量的不断增长与边缘接入技术的显著提升,边缘设备呈现爆发式增长。边缘网络资源比专门用于大型视频直播系统的云流量成本要更低。去中心化的直播系统作为一种经济实惠的解决方案,其频道切换响应时间却比传统广播电视要长得多,影响观众的体验质量,因此,本文聚焦研究网络电视直播频道的数据分享与快速切换问题。基于现有相关研究工作基础,首先,本文提出一种基于边缘数据分享的网络电视直播频道快速切换系统原型
高频链矩阵整流器(High-Frequency Link Matrix Rectifier,HFLMR)是一种由三相矩阵变换器演化而来的新型拓扑结构,它一般由输入滤波器、双向开关矩阵、高频变压器、整流器、输出滤波器五个部分组成。由于该拓扑无大容量储能元件且串联有高频变压器,因此具有能量密度高、体积小、输入电流标准正弦、单位功率因数等优点,在对重量、体积、效率以及隔离需求较高的场合具有一定的应用价值
关系抽取作为信息抽取技术的一个重要子任务,为自然语言处理的许多领域提供了必要的技术支持,具有重要的研究意义和应用价值。传统方法通常采用人工标注获取实体关系标注数据集。但是这种方法繁琐昂贵,只能对少量样本进行标注,很难学习到有效的实体关系特征。为此,远程监督方法提出以外部知识库作为监督源,通过知识库中的先验知识自动标注大量句子,有效地避免有监督模型数据集规模过小的问题,成为了关系抽取的研究热点。然而
人脸表情识别是人机交互的重要内容,可以广泛应用于医疗、游戏娱乐、驾驶安全等多个领域。现阶段的基于深度学习的人脸表情识别研究中,多数是使用卷积神经网络的结构以提取图像的空间域信息。这些方法主要有两个方面的问题:一是虽然识别率较高,但是通常网络结构比较复杂,参数量和计算量都很大,在表情识别任务中显得臃肿;二是大多数研究使用整张人脸图像作为输入,较少地考虑充分利用和人脸表情相关的局部区域信息。针对这两个
近年来,人工智能的快速发展改变了人们的生活。许多人工智能相关技术如无人驾驶、智能机器人等需要依赖物体的深度信息,因此深度估计成为了计算机视觉领域一大热点问题。其中,单目图像深度估计算法具有采集设备成本低且适用性高的优势,是目前深度估计算法的重点研究领域。本文主要研究了基于深度学习的单目图像深度估计算法,有效提高了深度图像的精度。主要研究工作如下:(1)总结了图像深度估计的研究背景以及意义,并概述了
轨道交通TOD模式是城市拓展的必经之路,纵观我国香港地区及国外发达城市的发展轨迹,均对轨道交通的建设高度重视,并且对轨道交通站域内土地高强度的开发利用已达成普遍共识。近几年TOD模式才开始在我国内地兴起,还存在经验不足、效能未得到充分发挥等突出问题。基于目前国内的城市发展、城市轨道交通发展及土地利用的现状,中央及各级政府推出一系列政策大力促进城市轨道交通TOD的发展,促使国内大陆城市逐步进入轨道交
超表面作为新型的微纳光子器件,可在具有深亚波长厚度的超薄界面内实现强大的电磁调控,包括对振幅、相位和偏振态的完全控制,尤其是基于广义斯涅尔定律的任意波前(相位)调控。研究表明,由各向异性的纳米天线或谐振器的周期单元构成的超表面可以在交叉偏振散射光中产生覆盖整个范围(从0到2π)的相移,并保持振幅的均匀性,在光波控制方面有着得天独厚的优越性。然而,大多超表面器件都是静态的,一旦制造完成其各类光学特性