论文部分内容阅读
研究背景人脂肪间充质干细胞(hADSCs)的深低温保存对于开展hADSCs细胞库的建立及临床应用至关重要。然而目前仍缺乏针对hADSCs深低温保存的研究。研究目的明确深低温保存前hADSCs分离纯化方法对其生物学特性的影响;明确hADSCs的低温生物学参数;明确hADSCs冷冻流程主要环节对其生物学特性的影响:探索纳米氧化石墨烯对hADSCs深低温保存效果的影响。研究方法第一部分:深低温保存前hADSCs分离纯化方法的研究(一)消化液体积与容器容积之比对酶学法获取基质血管成分(SVF)/hADSCs产量及生物学特性的影响人皮下脂肪抽吸物与酶消化液按0.2、0.4、0.6及0.8消化液体积与容器容积之比进行SVF提取并分析细胞产量及活细胞率、免疫表型、增殖能力及成脂、成骨及成软骨分化能力。(二)氯化铵(NH4C1)裂解法分离纯化hADSCs对其生物学特性的影响人皮下脂肪组织抽吸物提取的SVF,应用NH4C1红细胞裂解液进行处理,非裂解法作为对照。分析SVF细胞产量及活细胞率;分析hADSCs活细胞率、细胞凋亡水平、免疫表型、增殖能力、成脂及成骨分化能力。(三)深低温保存NH4C1裂解法分离纯化hADSCs的生物学特性用如上所述裂解法处理SVF并培养hADSCs,液氮深低温保存2周后复苏,非裂解法为对照。比较深低温保存前后的hADSCs的活细胞率、细胞凋亡水平、免疫表型、细胞增殖能力。第二部分:hADSCs低温生物学参数探索:跨膜水传输与胞内冰形成的研究利用低温显微镜平台采集hADSCs不同降温速率下的细胞图像。通过数学模型拟合水传输参数:细胞膜对水的渗透系数(Lpg)和水传输的活化能(ELp);以及胞内冰形成参数:动力学参数(ΩOSCN)和热力学参数(kOSCN),并推算无低温保护剂条件下最佳降温速率。第三部分:hADSCs冷冻流程的研究(一)降温速率对hADSCs生物学特性的影响hADSCs 按 0.5℃/min、1℃/min、1C℃/min、25℃/min、50℃/min、80℃/min和100℃/min的降温速率冷冻并液氮深低温保存3个月,细胞复苏后分析其活细胞率、细胞凋亡水平、免疫表型、细胞增殖能力、成脂、成骨及成软骨分化能力及活性氧(ROS)水平。(二)细胞浓度对深低温保存hADSCs的生物学特性的影响hADSCs 按 0.5 × 106/mL、1×106/mL>2×106/mL、5×106/mL 和 10×106/mL细胞浓度于液氮深低温保存2周。复苏后分析其活细胞率、免疫表型、细胞增殖能力、成脂、成骨及成软骨分化能力。第四部分:纳米氧化石墨烯(GO)在hADSCs深低温保存中的保护作用的研究体外实验部分:对照组(CPA-C)使用常规90%胎牛血清(FBS)+10%DMSO作为低温保护剂,GO组(CPA-GO)在常规低温保护剂基础上增加5 μg/mL GO。hADSCs加入以上两组低温保护剂后深低温保存2周。分析深低温保存前后hADSCs的活细胞率、免疫表型、细胞增殖能力、成脂、成骨及成软骨分化能力、细胞凋亡水平,评估GO对hADSCs的毒性及GO残留情况。体内实验部分:深低温保存后hADSCs行活细胞率、免疫表型、细胞增殖能力、成脂、成骨及成软骨分化能力等生物学特性检测。采用GO组(CPA-GO)、常规低温保护剂对照组(CPA-C)及单纯PBS空白对照组进行hADSCs辅助脂肪移植;各组hADSCs与脂肪组织混合物移植于裸鼠颈部,3个月后取材。评估移植物重量,脂肪细胞成活情况及来源,移植物内血管数量及来源;组织内成脂及凋亡相关基因的表达水平;评估移植物内巨噬细胞浸润情况及炎症因子表达水平。研究结果第一部分:深低温保存前hADSCs分离纯化方法的研究(一)消化液体积与容器容积之比对酶学法获取SVF/hADSCs产量及生物学特性的影响0.4组细胞产量最高,为2.65±0.98X 105个细胞;0.2组活细胞率最高,为76.20±4.91%,0.4组活细胞率次之,为72.96±4.64%。各消化液体积与容器容积之比组hADSCs其余生物学特性无显著差异。(二)氯化铵(NH4Cl)裂解法分离纯化hADSCs对其生物学特性的影响裂解组SVF活细胞数、活细胞率显著低于非裂解组;NH4Cl裂解诱导hADSCs凋亡并降低hADSCs增殖能力;余生物学特性组间无统计学差异。(三)深低温保存NH4Cl裂解法分离纯化hADSCs的生物学特性深低温保存与裂解具有协同促hASCs凋亡的作用;深低温保存前后裂解组细胞增殖能力较非裂解组差。第二部分:hADSCs低温生物学参数探索:跨膜水传输与胞内冰形成的研究联合拟合得到相应的水传输参数为:Lpg=3.79 X 10-14 m/s/Pa(0.23 μm/min/atm),ELp=154.94 kJ/mol(37.01 kcal/mol)。根据 Generic Optimal Cooling Rate Equation(GOCRE)最佳降温速度推测公式推测的最佳降温速度为4.30℃/min。平均动力学参数ΩOSCN为7.79 X 108 m-2 s-1平均热力学参数kOSCN 为 2.93×109K5。第三部分:hADSCs冷冻流程的研究(一)降温速率对hADSCs生物学特性的影响随着降温速率从50℃/min降低到0.5℃/min,深低温保存后活细胞率有逐渐增高的趋势,0.5℃/min组活细胞率为93.17±2.29%;细胞ROS水平随降温速率的变化趋势近似倒U型,峰值对应的降温速率为25℃/min;80℃/min组保持较强的成软骨能力。(二)细胞浓度对深低温保存hADSCs的生物学特性的影响活细胞率随细胞浓度的增加而增加,至5×106/mL组活细胞率为91.28±2.57%,10×106/mL组活细胞率为93.87±1.80%。各细胞浓度组间生物学特性无显著差异。第四部分:纳米GO在hADSCs深低温保存中的保护作用的研究体外实验部分:0.01-100 μ g/mL GO与hADSCs共培养未见细胞毒性,透射电镜未见明显胞内GO残留。低温保护剂内添加5 μg/mL GO有助于提高活细胞率及复苏率,减少细胞凋亡水平。体内实验部分:与对照组相比,CPA-GO组脂肪移植物内成活脂肪细胞数及血管数更多;CPA-GO组移植物内鼠源VEGF水平有增高的趋势,炎症因子MCP-1有降低的趋势。研究结论第一部分:深低温保存前hADSCs分离纯化方法的研究0.4可能是酶学消化法分离hADSCs的最佳消化液体积与容器容积之比;hADSCs提取过程中应避免NH4Cl红细胞裂解处理。第二部分:hADSCs低温生物学参数探索:跨膜水传输与胞内冰形成的研究hADSCs细胞膜对水的通透性较低,且在相对较高的温度范围内易出现胞内冰,降温速率应足够慢以减少胞内冰的形成。第三部分:hADSCs冷冻流程的研究以0.5℃/min降温速率冷冻hADSCs可以保持较高的活细胞率及较佳的生物学特性;5×106/mL至10×106/mL可作为大批量深低温保存hADSCs的适宜细胞浓度。第四部分:纳米GO在hADSCs深低温保存中的保护作用的研究纳米GO在hADSCs的深低温保存中发挥保护作用。