论文部分内容阅读
FAST(Five hundred meters Aperture Spherical radio Telescope)是500m口径球面射电望远镜的简称,是当今世界上最大的单口径射电望远镜。馈源舱是射电天文望远镜的关键部件之一,也是馈源接收机等有效载荷的安装平台。馈源舱是一个集机械、电气、电磁波等相关技术于一体的复杂综合系统。由于FAST结构空间跨度较大,主反射面与接收机之间的刚性连接精度较低,使得馈源舱空间定位不精确,不能实现馈源高精度的定位和指向跟踪。本文围绕FAST馈源舱位姿测量技术,重点研究了馈源舱安装现场大尺度同轴度测量、馈源舱Stewart机构标定、馈源舱位姿测量等的理论及技术。本文的主要工作和创新点如下:1.提出了一种适用于施工现场的大尺寸同轴度测量方法。以FAST馈源舱星形框架同轴度测量为背景,采用激光跟踪仪测量系统,将测量同轴度轴线偏差转换为测量基准轴线与端面法线的夹角,实现了大尺寸同轴度的现场测量。该方法测量精度高,操作简便,易于实现,测量的基准轴线与端面法线的夹角达到0.094°,优于0.2°的设计要求。2.通过分析结构性能和参数模型提出了一种Stewart机构的标定方法。馈源舱的精确定位需要克服加工及装配误差、测量误差、刚度变形以及外界扰动耦合的影响,通过分析Stewart结构、性能、参数模型及仿真等,确定了机构标定方法;结合模型的边界条件及仿真条件,应用ADAMS模型进行了馈源舱机构动力学仿真,应用Simulink模型进行了馈源舱伺服控制系统仿真,并实现ADAMS-Simulink的联合仿真。最后通过激光跟踪仪测量、数据处理及误差分析,实现了Stewart机构的精确标定。3.设计了Stewart机构位姿测量的三种方法。研究了单台激光跟踪仪测量法、DPM系统测量法及三台激光跟踪仪联合测量法,通过对比分析三种测量系统原理、测量方案、位姿解算等内容,得出了三种位姿测量方法的优缺点:单台激光跟踪仪测量方法使用方便,DPM系统测量方法设站灵活,三台激光跟踪仪联合测量方法效率高。