【摘 要】
:
现有的颗粒动理学理论大多针对气固流动而建立,而在液固流动中颗粒惯性作用显著减弱,紊动扩散趋势增强。在稠密液固两相流颗粒相本构关系中应综合体现流体湍流脉动-颗粒作用以及颗粒间碰撞的共同影响,发展建立稠密液固两相流颗粒动理学模型具有重要意义。此外,大部分工业液态流化介质均表现出典型的非牛顿流变特性,研究非牛顿流体各流变参数对固相颗粒流动特性的影响十分必要。液固流化床以及钻井过程中的岩屑颗粒输运是典型的
论文部分内容阅读
现有的颗粒动理学理论大多针对气固流动而建立,而在液固流动中颗粒惯性作用显著减弱,紊动扩散趋势增强。在稠密液固两相流颗粒相本构关系中应综合体现流体湍流脉动-颗粒作用以及颗粒间碰撞的共同影响,发展建立稠密液固两相流颗粒动理学模型具有重要意义。此外,大部分工业液态流化介质均表现出典型的非牛顿流变特性,研究非牛顿流体各流变参数对固相颗粒流动特性的影响十分必要。液固流化床以及钻井过程中的岩屑颗粒输运是典型的非牛顿流体-颗粒两相流工业应用,对上述工业过程中的两相混合特性以及颗粒在液相中的悬浮和沉积的研究具有实际意义。本文基于颗粒动理学理论,考虑液相湍流脉动-颗粒作用,引用稠密气体分子动理学中碰撞分量结果求解高颗粒浓度下的固相应力及脉动能传导通量,推导获得了颗粒剪切粘度、体积粘度、颗粒压力以及脉动能传导等固相传输系数的显式表达式,建立了稠密液固两相流颗粒动理学模型。在液固两相流动中,由该模型计算得到的固相传输系数较原模型高;而在颗粒惯性作用较强的气固流动中,该模型计算得到的固相传输系数与原模型十分接近,二者间差异仅体现在较低颗粒浓度时的流体湍流脉动贡献。针对非牛顿幂律流体-颗粒相间作用,提出了考虑流变特性影响的相间曳力模型,在高颗粒浓度(εs≥0.2)下基于Ergun方程修正了颗粒间隙表面处非牛顿流体表观流变参数,在低颗粒浓度(εs<0.2)下基于Wen-Yu模型修正了颗粒雷诺数并采用了考虑流性指数影响的Cd-Ren关联式。在牛顿流体中,该非牛顿曳力模型可退化为Gidaspow模型。在液固鼓泡流化床计算中,相较于原颗粒动理学模型,本文液固颗粒动理学模型计算获得了与实验结果更吻合的床内平均颗粒浓度和速度。当液相速度高于2.5倍最小流化速度时,固相粘度由其动力分量主导;当固相浓度高于0.25时,其粘度中碰撞分量占优。在液固循环流化床计算中,本文模型计算获得了与实验值更吻合的颗粒浓度及速度沿提升管径向的分布。此外,采用该液固颗粒动理学模型结合本文非牛顿流体-颗粒相间曳力模型对幂律流体颗粒流化床的计算表明,在不同流变参数、颗粒直径以及液相流速下该曳力模型均得到了与实验值更加吻合的床层空隙率结果。针对井筒环空内非牛顿钻井液对岩屑颗粒的输运机理进行了数值模拟研究。计算得到了岩屑浓度及速度分布沿钻杆旋转方向的摆荡现象以及包括悬浮区、移动床区和固定床区在内的岩屑颗粒运移三层流态。井斜角较低时,岩屑运移以悬浮流动方式为主;井斜角较高时,岩屑颗粒滚动运移流态逐渐凸显。井斜角在35°到65°之间时,岩屑输运效率最低而液固流动压降最高。之后,采用嵌入式滑移网格方法实现了岩屑输运过程中钻杆的行星旋转。钻杆的轨道公转周期性地刮削环空底部岩屑床,更多岩屑颗粒由固定床层进入悬浮区进而被运移出井筒。当钻杆自转与公转反向时,将出现显著的液固两相二次流。随着钻杆自转、公转速度以及公转半径的增大,岩屑输运效率得到一定程度的提高,然而这显著地增大了液固混合物施加在钻杆上的力矩。此外,提出了脉冲钻井携岩方案并对其改善岩屑输运的效果进行了数值模拟。脉冲钻井液显著降低了移动床区岩屑浓度并增大了固定床区岩屑轴向速度,提高钻井液速度脉冲的振幅和频率将增大岩屑输运效率。针对非牛顿流体各流变参数的影响,对钻井环空内塑性赫巴流体-岩屑两相流动进行了数值模拟研究。在赫巴特性钻井液对岩屑的输运过程中,提高钻井液屈服应力、稠度系数以及流性指数使得其悬浮分散岩屑颗粒的能力增强,环空底部岩屑轴向流动加速,切向流动面积扩大,岩屑输运效率提高。随着钻井液屈服应力的增大,环空底部岩屑轴向流动增强,而环空上方岩屑轴向流动略有减弱。当钻井液稠度系数及流性指数均较低时,井筒内的岩屑运移为脉动的不稳定过程。
其他文献
近些年随着我国人口老龄化趋势的加重以及人们出行方式的改变,骨科手术量逐年增长,尤其是腰椎疾病已经成为临床最主要的病种。机器人辅助脊柱手术是融合机器人技术、图像处理技术和脊柱手术技术的新型临床解决方案。这种解决方案缓解了传统微创手术对医生经验的过度依赖,也缩短了医生在计算机辅助手术中的学习曲线,并有利于提升临床手术的精确性和可靠性。现有机器人产品主要面向术中椎弓根钉道定位,而精细、繁重的椎弓根钉道钻
氮杂和氧杂环结构片段广泛存在于天然产物、药物以及功能材料分子之中,由于其独特的生理及化学活性,高效快速构建此类杂环化合物成为有机合成化学重要的研究领域。烯烃来源广泛且性质活泼,是重要的石化产品和基础化工原料,通过烯烃与杂原子的亲核加成反应构建碳杂键以及杂环化合物一直备受关注。然而一般情况下烯烃难以发生亲核反应,传统的酸化以及自由基引发的方法又有诸多弊端,例如环境不友好以及安全系数低等,因此烯烃的亲
涡轮叶片高负荷设计能够通过提高叶片负荷水平的方式提高航空发动机的推重比水平,但也存在加大栅内二次流控制难度、提高二次流损失的负面影响。当前研究基于某涡轴发动机第一级动叶根部叶型,对比了变稠度设计与变转角设计对叶片负荷水平的影响及两类高负荷涡轮叶栅的流场特征,开展了叶片复合弯曲与端壁分区造型的设计与应用研究以及二者的联合设计与应用研究。此外,数值方法验证中还提出了一种可以保持风洞侧壁完整的实验系统周
Cf/SiC复合材料具有比强度高、断裂韧性好以及高温性能优异等一系列优点,被认为是最重要的高温结构材料之一。但是,Cf/SiC可加工性较差并且制备成本高昂,这在一定程度上限制了它的应用。因此,将Cf/SiC与加工性好、耐高温且成本较低的金属Nb连接,可弥补Cf/SiC在应用方面的不足,扩展Cf/SiC的应用范围。本文基于相图的理论分析设计了三种Ti基钎料,实现了Cf/SiC与Nb的可靠连接,通过(
具备高反应特性的活性氧、活性硫和活性羰基化合物等小分子物质以及具备高催化功能的酶在调节细胞内物质代谢、调控相应生物学功能、维持细胞稳态和正常生理功能方面发挥着至关重要的作用。因此,检测和监测细胞内活性物质有助于了解它们在细胞内的生物作用以及引起的各种生物学效应,并在揭示它们的生理功能和涉及疾病的病理学研究等方面具有重要的生物学和医学意义。近些年,得益于荧光成像技术的发展,荧光探针技术在可视化检测和
近年来,随着航天领域的快速发展,针对振动测量技术的研究日益迫切,对航天器运动副微弱振动的非接触、高效、高精度检测在航天领域内具有重要意义。激光自混合干涉技术测量精度高且具有自准直、结构紧凑等优点而越来越受到研究者的青睐。激光自混合干涉测量技术是一种基于激光二极管弱耦合现象的测量方法。激光器的出射光束被物体表面反射或散射后再次进入激光内腔,与腔内光混合后调制激光器的功率输出,形成自混合干涉。研究通用
生物水黾是一种常见的水生昆虫,能够在水面飞快的滑行与跳跃。其非凡的水面环境运动能力,成为学者们研究水面运动机器人争相模仿的对象。仿水黾水面运动机器人可用于导航通讯中继节点、执行水质监测、水面侦查等任务,在军用、民用领域均具有广阔的应用前景。仿水黾机器人的研究不仅需要探究生物水黾水面运动机理,同时涉及到机器人水-空气界面运动与水相互作用,由于水的流动性与易扰动性,导致其在运动过程中与水相互作用力变化
石油工业的迅速发展造成的石油烃类(Total petroleum hydrocarbons,TPH)污染已成为我国土壤资源破坏的主要形式之一。同时,石油火灾的扑灭以及定期的防火演习导致了大量水成膜泡沫灭火剂(Aqueous film forming foams,AFFF)的释放,从而引起了全氟烷基化合物(Perfluoroalkyl substances,PFAS)的环境污染。这也促使了一些石油工
对于工作温度为中温段的热电材料,无论是从热电优值和机械性能角度比较,还是从经济性和环境友好性角度比较,方钴矿基热电材料均具有显著的竞争优势,并被成功应用在民用汽车尾气废热回收和航天深空探测领域。热电材料在实际应用中需要将p型热电材料与n型热电材料用导电材料连接组成热电器件使用。调控热电材料内部声电输运,优化热电传输性能,同时设计低接触电阻和高热稳定性的电极/热电材料接头是实现高转换效率和高可靠性热
使用地震数据研究地球物理特征,这对于地球内部结构探索至关重要。然而,大多数真实地震数据在记录过程中都受到噪声污染。数据中的噪声导致重要信息被掩盖,从而影响分析的准确程度。因此,记录数据的噪声消除是地震信号处理中的一项重要任务。获取高分辨率图像,提高信噪比,挖掘隐藏信息并保留重要特征是去噪过程的关键。为了深入研究此问题,人们提出了许多数学理论和方法。这些算法各有优缺点。本论文综合现有技术的优点,针对