论文部分内容阅读
近年来,超声速和高超声速飞行器大量涌现,其结构部件的工作环境非常恶劣,为了能在高温、腐蚀、振动等复杂工况下工作,复合材料在航空航天领域得到广泛应用。相比以往的情形,飞行器设计中常用板壳结构的边界条件也发生了改变,这给复杂飞行环境下复合材料结构气动弹性颤振研究带来了挑战。颤振是结构在气动力、惯性力和弹性力相互耦合下发生的一种自激振动,它是结构动强度中最重要的气动弹性问题。当颤振发生时,结构一般呈现有限幅值的极限环振动,对飞行器结构的疲劳强度、飞行性能和飞行安全带来不利影响。同时随着飞行马赫数的提高,气动热效应带来结构刚度下降,产生热应力、热应变和材料烧蚀等现象,因此在超声速气动弹性研究中需要考虑热载荷对结构颤振稳定性的影响。本文深入研究了超声速气流中复合材料板壳结构的振动特性和气动弹性颤振行为。其主要研究内容如下:给出一种基于人工弹簧技术和Rayleigh-Ritz法确定弹性支撑、弹性连接板壳结构自由振动特性的统一方法,通过在边界和连接处布置人工弹簧来模拟弹性支撑和弹性连接,结构的位移场通过自由梁函数、修正Fourier级数和特征正交多项式三种不同的试函数表示。考虑人工弹簧的变形势能,借助Rayleigh-Ritz法给出了结构固有频率和振型函数的统一解形式。比较不同试函数在求解结构频率时的正确性、收敛性和计算效率差异;讨论不同弹簧刚度下板壳结构自由振动特性。针对以往气动弹性以及振动特性分析均集中于经典边界结构的问题,考虑均匀温度升高带来的热应变效应,基于弹性支撑结构的模态函数,讨论超声速气流中复合材料层合板结构的振动及颤振特性。采用von Kármán大变形理论描述层合板的非线性位移-应变关系,气动力采用一阶准定常活塞理论,推导了层合板结构颤振的非线性偏微分方程,通过假设模态法和Garlerkin法将偏微分方程组离散成常微分运动方程。采用频域分析方法讨论弹簧刚度、不同边界对层合板固有频率、热屈曲和颤振稳定性的影响;分析来流动压因素对壁板非线性动力学响应的作用。考虑非均匀温度场中弹性支撑圆柱壳结构,通过求解稳态热传导方程得到温度沿厚度方向的梯度分布,考虑结构材料属性是温度和位置坐标的函数,基于线性活塞理论建立超声速气流中弹性支撑圆柱壳结构的气动弹性方程。利用Rayleigh-Ritz法给出的圆柱壳结构的模态函数离散系统的偏微分运动方程,其中试函数由Gram-Schmidt过程构造的正交多项式簇组成。分析圆柱壳体积分数指数、不同边界、不同温度场载荷对圆柱壳振动特性和颤振边界的影响。建立高超声速气流中壁板结构的流-固-热耦合模型,通过热-气动弹性耦合迭代计算,研究非均匀加热情况下结构的非线性动力学行为。采用Ecoker参考温度法和热流方程计算结构表面热流;采用显示有限差分递推格式计算沿弦向和厚度方向的二维瞬态热传导方程,给出了结构的瞬态温度场分布。整个耦合计算中,考虑结构材料属性、热膨胀系数等参数随温度实时变化,弹性变形对气动加热、气动加热对平板刚度的影响,计算壁板结构在气动热-气动弹性耦合作用下的时域响应,并与稳定温度场中结构的非线性响应做了对比。