RP-3燃油-空气润滑高速滚动轴承性能测试与分析

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:zeroorhero
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
制空权的争夺是影响现代战争胜负的关键因素。随着战争武器装备的不断发展,高性能的无人机在夺取制空权中的作用日趋重要。对无人机而言,灵活的机动性是决定其性能的重要方面。航空发动机作为无人机的“心脏”,必须拥有优异的性能和极高的可靠性。滚动轴承是航空发动机的重要承载润滑部件,在高温、高压、高转速的环境下工作,若长期处于干摩擦或边界润滑,会导致其严重磨损,甚至造成轴承抱轴卡死,对发动机的性能与可靠性产生不利影响。因此,如何保证轴承的良好润滑具有重要的研究意义。本文研究的某型涡喷发动机采用RP-3燃油自润滑,发动机工作过程中会产生大量气流,采用油气润滑可以优化润滑系统结构,满足飞行器轻量化要求,且油气润滑作为新兴的润滑技术,具有油耗低、散热好的优势。在油气润滑过程中,油气管道内环状流的形成是良好润滑的基础,但RP-3燃油低粘度、低接触角等材料特性与传统润滑油有很大区别,有必要研究RP-3燃油在不同工况下对轴承润滑的影响规律。本文根据某涡喷发动机实际工况,开展了数值模拟并指导试验设计,主要进行了以下工作:(1)研究RP-3燃油的流动特性及工况对管道内环状流的影响。建立了水平油气管道模型,使用Fluent模拟计算了润滑油材料参数对环状流状态的影响,结果表明RP-3燃油比传统润滑油有更好的成膜条件,其中低的粘度、接触角和气液张力系数都更有利于管内形成均匀环状流,但膜厚低于传统润滑油;RP-3燃油在油气管道中形成环状流所需的供气速度和供油量比传统润滑油低,管径的减小并不会减少对供油量的需求。因此实际使用中,相较于传统润滑油的使用规范,可以缩短油气管道长度,优化结构,减小供气压力节约气量,减少单次泵入油气管道的油量并增加供油次数,使供油更加均匀。(2)根据轴承使用工况和设计标准,对高速轴承油气润滑测试台架进行了总体设计和关键零部件公差及轴承排列设计;对7002系列轴承进行了理论分析,结果表明7002C和7002A5角接触球轴承均可满足发动机载荷要求;对滚动体进行热力学计算,油气润滑的摩擦转矩明显小于脂润滑。润滑过程中强制对流是主要的散热途径,但达到一定气速后,持续增加气速对轴承降温效果减小,同时影响环状流的形成和轴承滚动体的覆膜。(3)通过试验测试了不同供油量、供气压力、轴向载荷、径向载荷、转速对7002C轴承温升的影响,结果表明油气润滑中RP-3燃油相较于传统润滑油需要更高的供油量,并确定了供油量的可选范围;不同转速对供油量可选范围影响不大;供气压力在可控范围内对轴承润滑影响更大,在可形成良好润滑的条件下建议采用更低供气压力;对于7002C角接触球轴承,轴向载荷对轴承温升的影响大于径向载荷。
其他文献
拓扑优化设计旨在一定约束条件下,追求特定设计区域中材料的最佳分布。近几十年来,它以低成本,高效率和高收益能力为优势,已成为创新设计方法的重要组成部分,广泛用于航空航天,汽车,造船和机械制造等领域。随着资源竞争加剧,传统的单一材料结构已无法满足工程中所需要的多种综合性能,近年来国内外多位学者对多相材料结构拓扑优化展开了研究。多相材料结构可以将多种不同属性的材料更加合理的利用起来,共同承担结构受力,以
高超声速飞行器等现代飞行器常面临高温高压热冲击等复杂工作环境,发动机等结构部件容易在循环热力载荷作用下产生断裂破坏等失效行为。断裂事故分析表明,断裂与结构中存在的缺陷或者裂纹密切相关,而由裂纹等缺陷引起的机械结构断裂失效,是工程中主要的失效模式。因此,对这类面临极端环境的含裂纹结构进行断裂力学行为分析,可有效预防结构断裂的发生,降低结构的失效概率,增大结构使用寿命。本文开展了针对结构断裂力学行为中
近年来,伴随经济的快速发展,我国大力促进铁路发展。随着“四纵四横”的快速客运通道的建成,截止到今天,我国已经拥有全世界最大的高速网络。我国的铁路轨道结构主要有两种类型:有砟轨道和无砟轨道。无砟轨道凭借其稳定、平顺、维修少等特点,逐渐替代有砟轨道。无砟轨道结构由下至上分别由地基、底座板、CA砂浆(乳化沥青砂浆)、轨道板和铁轨等部分组成。然而,在无砟轨道实际运行的过程中由于荷载、环境及施工工艺的影响,
折叠机翼技术是舰载机与航母相匹配的关键技术,通过该技术可缩小机翼展向尺寸,使航母在有限的甲板空间内容纳尽可能多的舰载机,增强航母战斗力。我国歼-20、美国F-22和F-35战机都采用多机翼协同控制方案,必要时进行机翼折叠,增加飞机机动性。未来飞机的发展趋势是多电和全电飞机,以电作动技术实现机翼的折叠不仅可避免液压传动带来的一些问题,还具有降低飞机重量、提高可维护性等诸多优点。基于以上背景,本文以电
多孔铝是由气相和孔壁组成的一种轻质材料。传统的无序多孔铝具有高比强度、比刚度等特性,但其孔结构分布的随机性导致无序多孔铝的性能不可预测,制约了多孔铝的推广应用。相比于无序的多孔铝,有序多孔铝的结构具有三维周期性,可以实现结构、性能的可控设计,使材料的力学性能得到有效控制,因此结构设计也是提升其性能的常见手段。国内外的研究表明,在常见的有序多孔结构基础上,进行一定的尺寸优化或者拓扑优化,可以改变有序
随着基础设施的大规模建设,我国工业与民用领域出现了很多重大工程和复杂设备,板状结构是这些工程和设备中常见的一种结构,而钢板又是我国钢铁产业中产量最大的一种产品。在钢板制作和服役过程中,初始缺陷、环境侵蚀及外力作用使钢板表面、内部产生裂纹或孔洞。这些缺陷的存在会影响结构的力学强度和稳定性,因此对其进行检测是至关重要的。电磁超声检测是一种较新的无损检测技术,它以电磁耦合方式在结构中激发超声波,相比于传
叶片是航空发动机关键零部件,广泛采用镍基高温合金、钛合金等高强度、高硬度材料。国内外常采用电解加工(Electrochemical Machining,ECM)进行发动机叶片的加工制造,但由于ECM中间隙的存在使叶片边缘成型阶段的流场与电场十分复杂、难以控制,导致加工后的边缘存在与设计不符的形状尺寸误差,严重影响航空发动机的使用性能和寿命。电火花加工(Electrical Discharge Ma
随着国内基础设施建设的进一步推进,全断面隧道掘进机(TBM)在城市地铁、海底隧道等工程领域将会发挥越来越重要的作用。TBM在掘进过程中经常遇到高硬度岩石、破碎带等复杂工况,其主机系统振动剧烈,导致关键部件快速失效,严重影响了隧道施工的安全和效率。针对以上问题,本文建立了考虑外部空间多点随机载荷、多源驱动和系统非线性的TBM主机系统动力学模型,揭示关键部件振动特性和系统振动传递规律,从而提出一种多子
飞行器在高速飞行过程中会面临严重的气动加热问题,需要对飞行器进行热防护以确保飞行器结构的安全及飞行轨迹的准确。烧蚀热防护作为最重要的热防护手段,是发展高超声速飞行器的基础。烧蚀是一个外部流场-表面烧蚀-内部传热相互作用的耦合过程,问题非常复杂,需要防热材料研制、防热系统设计、地面烧蚀试验设备和测试、传热传质学科的共同发展来解决飞行器热防护问题。烧蚀试验提供了材料烧蚀的基础数据,但往往费时费力,而数
由于我国“一带一路”政策的实施,海外港口工程项目逐年增加,其中大部分位于长周期波主导的海域。长周期波的特性不同于一般的风浪和短周期波,一般波高不高,波长较长,统计特性和谱特征也很明显,对于防波堤稳定性以及港内波况影响很大。斜坡堤作为港口工程中最常用的结构形式,其护面块体在长周期波作用下的稳定性,运用我国现行规范计算存在着诸多不足,对于设计波浪平均周期超过10秒或设计波高与设计波长比小于1/30的坦