【摘 要】
:
哈密顿系统的研究源于数理科学,生命科学以及其他的许多科学领域,特别是在天理力学,量子力学,航天科学以及生物工程发展中,是微分算子研究的核心内容.然而几乎所有的现实问题
论文部分内容阅读
哈密顿系统的研究源于数理科学,生命科学以及其他的许多科学领域,特别是在天理力学,量子力学,航天科学以及生物工程发展中,是微分算子研究的核心内容.然而几乎所有的现实问题所产生的哈密顿系统都是非线性的,为了比较准确地描述实际问题在一些条件下的性质,就需要对非线性系统进行线性化.本文研究为线性哈密顿系统.本文共分为三章.第一章绪论第二章在本章中主要研究算子有下界条件下线性哈密顿系统Ly:=Jy’-Qy=AWy,t∈[0,+∞)的极限点与强极限点互为充要条件.并在本章第三节给出了其Friedrichs域.W是权函数.这里In是n×n的恒等矩阵;是局部可积的2n×2n阶的厄米矩阵.W0是n×n的正定矩阵;且λ∈C是谱参数.A*是A的复共轭转置矩阵,并且,局部可积是说在区间[0,+∞)的紧致子集上勒贝格可积.第三章将第二章的主要结果应用到Povzner-Wienholtz型自伴性结果上,得出一些新的结果.
其他文献
在这篇论文中,主要讨论了两类问题:第一类,在完备非紧黎曼流形Mn上,研究了一类Aronson-Benilan型非线性抛物方程(?)tu=△φup+bu在Witten Laplacian算子下的推广其中b,p是实值
随着现代科技水平的发展,军事装备竞赛日趋激烈,武器打击的精确度更准、进攻速度更快,从而要求我们及时对目标位置和运动状态做出准确的探测和估计。同时,现代电子战技术强调高隐
棉花是中国最重要的经济作物,是除粮食之外最重要的农产品和战略物资,棉花生产在国民经济发展中具有不可替代的地位。随着我国经济的快速发展,人们生活水平的提高,棉花对人们
在图中通过去掉一些点破坏圈的问题源于图论在组合电路设计,以及操作系统中预防出现死循环等问题中的应用.消圈数的研究在图论中起到非常重要的作用,它与图中最大森林的阶数
随着科学技术的不断发展,非线性泛函分析己成为现代数学中的重要研究方向之一。非线性泛函分析是数学中既有深刻理论又有广泛应用的研究学科,它以数学和物理学中出现的非线性
1965年Zadeh初次引入了模糊集的概念[1].在各式各样的模糊集理论的发展中,逐渐发现了古典集合论中的模糊模拟.事实上,在最近的40年里,模糊理论已经成为研究的热门话题,在科学
近年来,随着我国经济的快速发展和日益加快的城市化进程,城市交通面临着巨大的压力,各大城市为了改善城市交通的拥堵,缓解交通线的密集,积极开展了一系列地铁和隧道工程的修
差分方程自诞生以来,关于方程解的问题就成为人们一直精心研究的课题.随着研究的深入,人们发现大多数的差分方程是不能求出精确解的,于是差分方程的定性理论便显得十分必要了
Cauchy泛函方程和Jensen泛函方程的稳定性是泛函方程理论中稳定性问题的基础.泛函方程的稳定性问题是Ulam在1940年提出的关于群同态的稳定性问题;1941年,D.H.Hyers解决了Banac
脉冲微分方程正解存在性问题是微分方程理论中的一个重要课题,由于其重要的理论价值和物理背景,一直被许多研究者所关注,并取得了丰富的研究成果.在微分方程理论和实际问题的