论文部分内容阅读
汽车是我国国民经济的支柱产业之一,是集成最新前沿科技的工业产品。而汽车底盘性能是汽车内在产品品质的重要体现。无人驾驶汽车技术方兴未艾,当智能驾驶技术解放驾驶员的双手时,自动驾驶汽车的晕动症也越来越受到关注。舒适、放松、自然的驾乘体验是汽车底盘性能的永恒追求。半主动悬架系统具有性能好、可靠性高、能耗低的优势被大量学者关注和研究,并逐步应用在中高端车型中。半主动悬架是根据路面激励实时调节减振器的阻尼系数以此适应不同的路面情况,提高车辆舒适性和安全性。根据不同底盘驾驶模式的选择,面向不同的悬架控制目标的最佳控制策略成为半主动悬架控制策略开发的关键。开发面向电控悬架产品的半主动控制算法具有重要意义。半主动悬架控制算法已有40余年的发展,各种控制理论框架下控制算法都有所研究。但是面向特定控制目标下的最佳控制算法尚未有明确的定义。本文从该角度开展课题的研究,提出面向不同悬架性能目标的全频域内最佳控制策略,并进行理论证明、仿真验证和试验对比,证明算法的有效性。本文的主要研究内容如下:首先对控制对象半主动悬架进行建模,建立了不同形式的路面激励模型。对悬架的性能评价指标及评价方法进行介绍,并对二自由模型的准确性进行说明。针对阻尼可调减振器的建模方法,本文考虑实际的工程产品开发需要,选定非参数化建模方式,并借鉴UniTire轮胎模型的建模思想,提出了适用于电磁阀控减振器和磁流变液减振器等阻尼可调减振器的UniDamper减振器模型,该模型具有辨识参数少、满足物理边界条件等优点。为了能够精确描述减振器的响应特性,建立了减振器响应特性的动力学模型。然后,针对面向乘坐舒适性的以最小车身振动加速度为控制目标的控制策略进行对比分析。利用能量流传递理论对相关控制算法进行理论阐述,针对天棚(Skyhook,SH)和加速度阻尼(Acceleration Driven Damper,ADD)控制的不同控制特性,从控制逻辑相位关系的角度进行说明,然后提出了对车身加速度信号在低频时进行-90°的相位补偿,使其在低频时控制效果与SH控制接近,高频时控制效果与ADD控制接近,这样提出的改进ADD控制策略具有全频域内降低车身振动加速度的控制特性。然后又对理想SH和ADD控制的传递函数模型进行幅频特性的理论分析,证实改进ADD控制确实具有实际优势和理论根基,并通过仿真进行验证。接着,针对面向驾驶安全性的地棚(Groudhook,GH)控制算法,对速度GH和位移GH两种控制算法进行对比分析,同样基于相位补偿的方式,对轮胎振动速度进行相位补偿,这样提出的改进GH控制能够有效降低轮胎动变形,提高驾驶安全性。为了能够综合考虑悬架性能,利用权重因子方式将改进ADD分别与GH和改进GH进行混合,形成两种在全频域内的最佳混合控制算法,并通过仿真的方式进行验证。随后,以磁流变液阻尼可调减振器为研究对象,对响应特性进行分析和测试,发现减振器的响应时间受运动方向、速度、驱动电流幅值、控制的母线电压等因素影响。采用前馈-比例-积分的控制策略提高磁流变液减振器电磁系统的响应时间,为了提高控制算法抗干扰性,提出了基于理想阻尼力元和重力力元的理想改进加速度阻尼(Modified Acceleration Driven Damper,MADD)参考模型的滑模控制算法,并在不同的减振器响应时间进行仿真对比,发现采用参考模型的滑模控制受到减振器响应时间变化的因素影响较小,抗干扰能力强,相比其他算法具有优势。在悬架的性能表现上,车身振动加速度更容易受减振器响应时间特性的影响,轮胎动变形受减振器响应时间的影响弱一些。最后,利用电磁示功机开发一台面向悬架控制的减振器硬件在环(Hardware-in-the-loop,HiL)试验台,对减振器HiL试验台的工作原理进行介绍,对试验台的跟随特性进行分析验证,并介绍了双横臂悬架的运动-动力学模型。利用该试验台对前面章节中的控制算法进行验证。利用减振器HiL试验,进一步说明针对不同的控制目标提出的控制算法相比于其他算法更具有优势。本文的创新点主要在以下几个方面:(1)针对面向半主动悬架控制的工程开发需要,充分考虑减振器的外特性和响应特性,提出了面向悬架控制的UniDamper减振器模型。(2)对SH和ADD的控制逻辑相频特性进行理论分析,提出了考虑输入信号相位补偿特性的改进ADD控制和改进GH控制,最后利用权重因子的方式,提出了两种最佳混合控制策略。(3)利用物理力元下的理想抑制振动模型,提出结合理想SH和ADD控制的参考模型的滑模控制,突破了减振器响应时间等非线性因素引起的参数摄动和建模不确定性,提升算法的控制效果和抗干扰性。