深度学习系统的差分组合测试

来源 :天津大学 | 被引量 : 0次 | 上传用户:shengjie139
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着深度学习(Deeplearning,简记DL)系统越来越多地应用于安全相关领域,包括自动驾驶汽车和智能安防等,对深度学习模型预测准确性的高度信任变得至关重要。正如传统的软件开发一样,对模型行为正确性的信心源于对各种可能场景的严格测试。然而,与传统的软件开发不同,深度学习系统的逻辑是通过训练过程学习的,因此深度学习模型很难测试。另外现有的深度学习测试严重依赖于人工标记的数据,经常无法为边缘输入数据暴露出错误的行为。
  为了解决以上问题,本文提出差分组合测试(Differentialcombinationtesting,简记DCT),这是一种实现自动化检测的深度学习测试方法,用于系统地检测更多的边缘情况产生的错误行为并且无需依赖手动标记的输入数据。首先,基于随机图像变换的差分组合测试方法对种子图像添加约束,应用图像组合变换来自动生成能够增加神经元覆盖率和多个相似深度学习模型差分检测结果的测试用例。该方法利用多个有类似功能的深度学习系统作为交叉引证,使得输入数据可以被自动标记且可以自动检查多个深度学习系统输出行为的正确性。其次,基于优先级图像变换的差分组合测试方法在图像组合变换时添加了优先级策略,在系统模型检测时应用了自动检测结果的差分策略,实现了更高效率的图像处理过程以及更加准确地判断了深度学习系统的输出行为。最后,大量实验结果表明DCT方法在最常用的深度学习模型中高效地发现了数千个错误的边缘行为,可以较好地检测深度学习系统的可靠性和稳健性。
  综上所述,差分组合测试方法能够进行测试数据自动标注和实现高覆盖率测试并且能够同时检测多个深度学习模型的行为准确性,在数据标注和深度学习系统测试方面进行了有益的尝试。
其他文献
激光测距由于原理简单、可靠性强、测量距离远而广泛应用于航天、测绘、军事等领域。随着应用的不断深入,人们对于激光测距系统的尺寸、精度、功耗、测距范围等方面提出了更高的要求。因此采用更小尺寸、更低功耗、能实现更高精度、更大范围测量的单光子激光测距具有特殊的意义。  本文实现了基于时间相关单光子计数(Time-Correlated Single Photon Counting,TCSPC)的光子计数激光
学位
光场成像设备能够同时记录场景传递光线的位置信息和角度信息,将传统的二维图像扩至四维,更具有可塑性,围绕光场图像进行的有关计算机视觉领域的研究引起了广泛关注。其中,深度估计作为计算机视觉领域的一个分支,具有深远的研究意义和广泛的应用场景。基于光场图像的深度信息获取属于被动式深度获取方式,充分地发挥了由光场相机得到光场数据的优异特性,避免了单目深度估计和传统多目深度估计之间的矛盾。立体匹配算法可以对光
学位
随着经济的发展社会的进步,世界人口规模不断扩增,人口密度不断增大,在人类社会活动场所、内容形式变得丰富多彩的同时,人群的安全问题成为了社会各界关注的焦点。如一些购物广场、体育馆、音乐会场、商业街等公共场所常常分布着不同数量规模的人群,随着人群数量的增加,发生安全事故的概率随之增长,如何对聚集在一起的人群进行有效的分析成为了当下研究的热门问题。依靠人工观看监控视频分析人群行为并做出相应决策的方法,往
图像语义分割是计算机视觉领域的一个重要的分支,在卫星图像分割、医学图像诊断、无人驾驶等方面都有着重要的应用。在全卷积网络之后,语义分割领域提出了越来越多的深度学习算法。当前,语义分割算法的关注点主要有两个方面:一是在分割精度上,通过相关算法提升语义分割的准确率。二是在分割的效率上,采用轻量化网络来满足实时性的需求。本文致力于提高语义分割的精度,针对现有语义分割编解码方法中语义信息不平衡的问题,以及
随着信息科技的日益发展,人们对多媒体资源的质量要求也逐渐提升。近年来,高比特深度的显示设备不断发展。然而主流的多媒体资源,尤其是视频资源,仍然处于较低的比特深度,在显示时容易出现伪轮廓和色度畸变等现象。为了缓解这个问题,一些研究工作者利用插值方法、卷积神经网络等,提出了基于图像的比特深度增强算法。然而据我们所知,目前并没有针对视频设计的比特深度增强方法,而当图像算法应用在视频上时,相邻帧之间的信息
近年来,随着人们对海洋经济的不断发展以及海上地位的日益重视,各国对海洋资源开发和海洋权益维护的力度都不断加大,船舶作为海上重要运载工具也因此得到了广泛应用。在众多类型的船舶中,具有全驱动配置的水面船由于具有独立的横向推进装置可以有效完成一些操纵性和安全性要求较高的海洋作业任务,例如海底管道铺设、海上油气钻探以及海上扫雷作业等。这些海上作业的特点是都需要船舶沿着预先设定的轨迹精确移动以保证作业安全性
随着通信技术和传感器技术的发展,无线传感器网络在目标跟踪、环境监测、辅助导航、灾害预警、资源勘探、事故调查等军事和民用领域得到日益广泛的应用。受限于成本、使用环境和通信能力,采用常规的状态估计方法对无线传感器网络信息进行融合尤为困难,需要考虑其中存在的能量受限、带宽受限、非高斯噪声、噪声方差未知等问题。常用的多传感器信息融合策略包括存在唯一融合中心的集中式策略和去中心化的分布式策略两种。在集中式策
最小均方(Least Mean Squares, LMS)算法在系统辨识中的应用十分广泛。在实际应用中,很多待辨识系统的冲激响应呈现出了稀疏特征。分散稀疏系统、单簇稀疏系统与多簇稀疏系统是三类典型的稀疏系统。在对稀疏系统的辨识应用中,传统的LMS算法没有充分利用稀疏性这一先验信息,收敛速度较慢,无法快速跟踪外部环境的变化。  本文以提高LMS算法的收敛速度为出发点,就稀疏冲激响应的在线辨识问题开展
移动机器人在社会各个领域具有广泛的应用前景,并得到了大量研究。机器人学是复杂的,多学科交叉领域。移动机器人自主运动系统是由多个功能模块组成,每个功能模块相互独立,又相互联系,构成一个整体。所以,移动机器人系统是一个复杂的大系统。构造一个完整的,功能完善的自主导航系统,需要针对每一功能模块设计相应的算法,并且建立各模块之间的联系,形成一个统一的整体。其中,路径规划和运动控制模块是自主导航的重要组成部
水下无人潜航器(UnmannedUnderwaterVehicle,简称UUV)是一种重要水下运载平台,可以灵活搭载各种作业所需设备,完成多种水下作业任务。无人潜航器的自主程度高,自带能源可以脱离母船工作,在一定范围水域内进行水下地形勘测、石油管线检查、沉船探测、水文调查、水下通信中继、水雷探测、港口安全监视等作业。  自主路径规划是无人潜航器实现高度自治的前提,特别是近年来无人潜航作业区域持续扩