论文部分内容阅读
数值模拟和叠前逆时偏移的核心都是求解波动方程。而如何采用有限差分法精确且快速地去求解各类波动方程,从而实现数值模拟与叠前逆时偏移是本论文研究的主要内容。
本论文主要围绕各类介质中波动方程有限差分数值模拟与叠前逆偏移进行研究,取得主要成果包括:
(1)介绍了基于规则网格时空域有限差分方法,将其应用于来分别求解声波方程、粘滞声波方程和VTI声波方程,并且对该方法求解各类方程时的精度和稳定性进行了分析,还分别实现了其数值模拟。同时与规则网格传统有限差分法进行了对比。分析和数值模拟结果都表明:时空域规则网格有限差分法模拟精度更高、稳定性更好。
(2)介绍了基于交错网格时空域有限差分方法,将其应用于来分别求解声波方程和粘滞声波方程,并且对该方法求解各类方程时的数值频散和稳定性进行了分析,还分别实现了其数值模拟。同时与交错网格传统有限差分法进行了对比。分析和数值模拟结果都表明:交错网格时空域有限差分法模拟精度和稳定性优于交错网格传统有限差分法的模拟精度和稳定性。
(3)介绍了自适应有限差分策略,即在不同的速度区域采用不同长度的差分算子长度。将此策略应用到标量波场的数值模拟与叠前逆时偏移中,可以在不影响求解方程精度的前提下,有效提高计算效率。
(4)分别介绍了显式和隐式交错网格有限差分法,分析了两类差分的模拟精度,并分别采用两类有限差分法实现了弹性波、VTI弹性波的数值模拟。精度分析和数值模拟结果都表明:隐式交错网格有限差分的数值模拟精度高于显式交错网格有限差分数值模拟精度。同时将隐式交错网格有限差分应用到粘弹性波波场的数值模拟中,然后分析粘弹性介质中地震波的传播特征,还从不同角度总结出地震波的衰减规律。
(5)以Carcione粘弹各向异性理论为基础,推导了适用于粘弹TTI介质的二维三分量一阶速度-应力方程。采用旋转交错网格有限差分法分别实现了TTI介质中弹性波和粘弹性波的数值模拟,并进行了波场特征分析。对于TTI介质中粘弹性波数值模拟结果表明:旋转交错网格有限差分法模拟精度高,边界吸收效果好,可以得到高精度的波场快照和合成记录;并且波场快照和合成记录能较好地反映地下介质的各向异性特征和粘弹性特征。
(6)采用时空域规则网格有限差分法分别实现了声波、粘声波和VTI声波的叠前逆时偏移,并分别对应地与传统有限差分法实现的声波、粘声波和VTI声波叠前逆时偏移成像进行对比,结果表明基于时空域有限差分法的叠前逆时偏移效果更好。
(7)针对矢量波场,采用隐式交错网格有限差分法分别实现了弹性波和VTI弹性波的叠前逆时偏移,还采用旋转交错网格有限差分实现了TTI介质中矢量波场的叠前逆时偏移,将偏移结果和真实模型对比表明成像效果较好。