论文部分内容阅读
本论文利用有序算符内的积分方法(IWOP)和量子纠缠态表象发展量子力学相空间理论。量子相空间分布函数允许人们用尽可能多的经典语言来描述系统的量子特性并作为量子力学算符的表象工具来使用,最近被作为用来研究量子信息和量子计算机的有用工具。量子相空间的Wigner函数理论可以广泛地应用于处理量子光学、量子化学中的各种问题,尤其是用Wigner分布函数研究光场密度矩阵以及光的量子相干性以及激光理论等,而Husimi分布函数对于研究量子-经典对应、量子混沌也有其特殊的应用。本课题发现从量子纠缠的新概念和用IWOP技术的新方法可以较大地丰富量子相空间理论。本文主要内容包括:探索了从Wigner函数求P表示的途径,提出了由已知Wigner函数导出P表示的公式,并通过实例说明了该公式的用法,该项工作丰富了量子光场的经典表述理论。在纠缠Wigner算符的基础上提出纠缠Husimi算符的新概念,发现纠缠Husimi算符就是一个双模压缩相干态纯态密度矩阵,它为我们提供了一种简洁精炼的算符版式来计算双模量子态的Husimi分布函数。在算符的Weyl编序乘积积分技术的基础上导出两个Weyl编序算符的乘积公式,并进一步用纠缠态表象将该公式推广到纠缠形式,从而使Weyl-Wigner对应理论得到丰富和发展。发现了Weyl对应在研究Husimi算符中的新应用,提出了一种简便地寻找Husimi算符的方法,即把粗粒函数看作是Husimi算符的Weyl经典对应函数。由正规序Wigner算符的拉登变换引入了两个互为共轭的中介坐标-动量表象,在此基础上我们建立了相应的量子相空间理论,其中包括引入适合该空间的新的Wigner算符;并在该表象的基础上,建立了广义Fredholm算符方程,求出了它的解,并运用该方程导出有关厄米多项式的算符公式;揭示广义Wigner算符与统计学中的随机变量的二维正态分布形式上的相似,这对于研究量子态的tomogram(是英文Tomography的派生词)有用。作为纠缠Husimi算符理论的应用,我们计算并作图研究了单双模组合压缩态的Wigner函数和Husimi函数及其特性;计算并作图研究了激发压缩真空态的Husimi函数及其特性。利用双粒子纠缠态表象求解了带运动耦合的两个相互作用粒子的密度矩阵,带运动耦合的相互作用出现在分子物理、两个互感耦合电路量子化的问题中。充分运用有序算符内的积分技术和纠缠态表象,我们首次引入了均匀磁场(UMF)中电子态的Husimi算符,且把它表示为,即Husimi算符实际上是一纯压缩相干态γ,εκ投影子,它为我们提供了一种简便的算符版式来研究不同电子态的Husimi分布特性,论证了Husimi (边缘)分布是Wigner (边缘)分布的高斯扩展型。