论文部分内容阅读
氧化石墨烯(GO)作为化学法制备石墨烯的前驱物,由于在表面及边缘上大量含氧基团的引入,易于修饰与功能化,可控性高且保持着化学稳定性。基于石墨烯的复合材料是石墨烯应用领域中的重要研究方向,其在能量储存、电子器件、生物材料、传感材料和催化剂载体等领域展现出了优良性能,具有广阔的应用前景。虽然原材料石墨片来源广泛、成本低廉,但石墨烯、还原氧化石墨稀为疏水性且易于团聚,很难充分发挥其优良性能,因此,对氧化石墨烯进行功能化且制备宏观材料一直是材料研究热点。本论文通过使用无机纳米材料(银纳米粒子、二氧化硅纳米线、纳米二氧化钛)和有机高分子材料(卡拉胶和魔芋葡甘聚糖)对氧化石墨烯进行功能化并自组装成宏观块体或薄膜材料,并将所制备材料应用于芳香族化合物可见光催化和仿生材料研究。本论文的主要研究内容与结果如下:(1)通过简单的溶液混合方法,在常温下制备得到了不同银纳米粒子含量的形貌均一的系列3-D网状结构的宏观可分离AgNPs-SiO2NWs-RGO纳米复合材料,并将其用于催化还原对硝基苯酚。复合材料各组分之间以强分子间氢键和静电吸附作用相互结合。材料的疏水性和弱磁性有利于材料的重复使用。AgNPs添加量为10 mL时,复合材料表现出最佳的光化学催化性能及稳定性。(2)通过水热反应方法,在130℃,反应10小时制备得到了不同Ag-TiO2含量的形貌统一的系列特殊的具有皱纹的3-D粗糙蓬松结构的宏观可分离Ag-TiO2/RGO纳米复合材料,并将其应用于催化降解单宁酸。Ag-TiO2与RGO之间生成Ti-O-C连接,但C原子并未进入TiO2晶格间隙。材料的疏水性有利于块体材料的重复使用。Ag-TiO2添加量为25 mg时,复合材料表现出最佳的光化学催化性和稳定性。(3)通过自蒸发溶液自组装法,在最佳制备条件下制备了不同GO添加量的具有界限分明的层状结构的天然高分子/氧化石墨烯纳米复合薄膜材料。GO与高分子之间以强的分子间氢键连接,GO含量达到10 wt%时会出现GO团聚成石墨的现象。GO的添加有效的提高了薄膜的机械性能,GO含量为7.5 wt%时达到机械性能的最佳值。GO的存在使得薄膜材料能有效抵抗冷热循环和臭氧老化对于材料性能的破坏。细胞毒性测试表明无毒高强度的CKG薄膜具有很好的细胞生物相容性。本论文通过尝试不同的材料和方法,制备得到了不同性能的氧化石墨烯纳米复合材料,并有望在催化和生物材料领域实现应用。