含随机参数结构基于随机有限元法的结构响应分析

来源 :南京航空航天大学 | 被引量 : 0次 | 上传用户:allonwxg
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着计算机技术的发展和对结构特性要求的提高,工程结构中的不确定因素,从结构的材料参数到几何尺寸等等,越来越引起大家的重视。而在对随机结构力学行为的研究中,类似于确定性系统的有限元方法(FEM),随机有限元方法(SFEM)作为一种数值求解方法具有独特的优势。  在确定性有限元方法中,首先要解决的是结构的离散问题——实质是位移场的离散。同样,在随机有限元方法中也会涉及到位移场的离散。不过与确定性的有限元方法不同,随机有限元方法首先要解决随机场的离散或分离。本学位论文中,结构中的随机参数主要考虑为具有高斯分布的随机场,采用Karhunen-Loeve级数分解,将此类具有二阶矩的随机场在随机变量空间中进行展开,以实现随机变量和确定性函数的分离。由于随机场的分离与实际结构的位移场离散不存在耦合问题,因此该方法便于计算程序的运行且增大了使用范围。  不同于确定性的有限元方法,随机有限元方法面临的第二个问题是含随机参数刚度矩阵的求逆问题。本文主要采用Monte-Carlo方法、改进的Neumann展开法以及基于多项式混沌(PC)的谱随机有限元方法。首次对三维的随机结构进行动力学分析,并且通过 Monte-Carlo方法来检验后两种随机有限元法的结果。结果表明,谱随机有限元方法比改进的Neumann展开法具有更高的精确度,与MC方法的结果吻合程度更高。  随着随机变量数目的增加以及系统维数的增大,谱随机有限元方法的计算量会以立方次的量级增加,因此为了适用于实际需求,减少计算量,改进的谱随机有限元方法是必要的。本文将以两种典型的改进方法,简化多项式法(RPC)和随机缩减基方法(SRBM)进行说明。结果表明,两种方法与PC谱随机有限元方法的近似程度一致,但同时大幅度地降低了计算量。
其他文献
本文通过对荣华二采区10
期刊
本文旨在研究非矩形截面的超燃冲压发动机与乘波体机身一体化概念设计方法和气动性能分析。本文首先搭建了类X-43A高超声速飞行器概念设计与分析程序框架,其主要包括类X-43A飞
期刊
期刊
本文致力于研究复杂结构的分布动载荷时域识别技术。   利用模态参数理论和正交多项式理论,将外力在时间域空间域的混合域的激励基向量上展开,然后建立混合域的基向量同响应
励磁控制器不仅能提高电力系统的暂态稳定性,而且能有效地稳定机端电压。而电力系统是典型的非线性系统,当系统状态远离平衡点时,在平衡点用局部线性化方法设计控制器,其控制效果可能不理想。基于非线性控制理论的控制器的设计,对于改善系统的控制性能、提高控制精度和控制效率,无疑具有重要的理论和实际意义。论文借助于微分几何理论对非线性系统进行了全局的线性化。结合微分几何精确反馈线性化和最优控制理论,设计了一种非
期刊
期刊
本文通过对荣华二采区10
期刊
期刊