论文部分内容阅读
砷化镓(GaAs)作为一种高电子迁移率、宽带隙的半导体材料,在激光器、光电二极管、LED等光电器件的应用方面具有无可比拟的优势。此外,GaAs还因为具有很强的抗辐射能力而常被用于制造航天器件和核反应堆探测器。在太空任务或核应用过程中,GaAs器件将暴露在伽马射线、高能电子、质子和离子等辐射环境中,这些辐射环境可能导致缺陷团簇或位错的产生,从而影响器件的光电性能。因此,研究GaAs的辐照效应对其结构和光电性能的影响,对预测该材料的辐照行为和GaAs抗辐照器件的研制具有重要的意义。本文的主要工作如下:1.研究了Si掺杂GaAs在不同伽玛(Gamma)辐照剂量(0、0.1、1和10 KGy)下的结构特征与光电特性。原子力显微镜(AFM)表征显示在低辐照剂量下,样品的表面粗糙度处于10-11 nm量级,表明在该剂量下表面仍致密平整。随着辐照剂量增加,表面晶粒尺寸变大,凹凸不平,并出现较大空隙,说明GaAs薄膜的粗糙度随着辐射剂量的增加而增大。拉曼散射结果表明在10 KGy下其平均应变为0.009,小于GaAs的最大非弛豫应变(0.038),意味着GaAs仍具有良好的结晶度。此外,Si掺杂GaAs的电流在3 V偏压下明显减小,而在10 KGy伽玛辐射下其发光强度增加约60%,说明伽玛辐射剂量可能有助于去除GaAs层的非辐射复合中心。因此,Si掺杂GaAs具有良好的耐辐照性能,在高辐射剂量Gamma辐照下仍保持良好的结晶度,并使其发光性能得到较大幅度改善。2.研究了Si掺杂GaAs在N+和Ar+辐照下的结构特征与光电特性,采用的辐照剂量分别为0,5×1015和5×1016 ion/cm-2。在5×10166 cm-2的辐照剂量下,Ar+离子辐照后GaAs表面仍然致密平整,而相同剂量N+离子辐照后GaAs表面粗糙度为0.824 nm,同时产生V型坑状结构与山丘状结构,说明表面受到了明显的损伤。在5×1016 cm-2剂量下,N+和Ar+离子辐照GaAs的应变分别为0.075和0.028。相对于GaAs的最大非弛豫应变(0.038),Ar+离子辐照下的GaAs仍能保持一定的结晶性。SRIM模拟显示在5×10166 cm-2辐照剂量量下,相同能量下Ar+的辐照损伤更大。然而,拉曼光谱显示N+离子辐照后的应变值大于Ar+离子辐照后的应变值,可能的原因是离子辐照后,材料内部生成了新的Si-N键和Ga-N键,这导致材料的化学键振动模式发生变化,因此Raman光谱中光学声子峰出现大幅红移,晶格应变值也大幅增加。当辐照剂量大于5×1015 cm-2时,N+和Ar+辐照后GaAs的光致发光光谱均发生猝灭,说明不论是N+还是Ar+离子,都会显著降低GaAs的发光效率。综上所述,我们系统研究了Gamma辐照、N+和Ar+辐照Si掺杂GaAs前后的结构特征与光电特性。与Gamma辐照相比,剂量为5×1016 cm-2的N+和Ar+离子辐照会使Si掺杂GaAs产生更大的晶格应变。在10 KGy的Gamma辐照下,GaAs的发光性能会因为非辐射复合中心的去除而得到了很大提升,而当离子辐照剂量高于5×1015cm-2时,砷化镓的光致发光光谱均会发生猝灭。