论文部分内容阅读
在对微弱光电信号进行检测的系统中,由于存在着较强的噪声和各种干扰,使得有用信号几乎不可能被直接测量,而使用锁相放大器却可以及大地抑制噪声的影响获得有用信息。目前主流的通用锁相放大器,无论是国内产品还是国外产品,几乎都是采用的数字电路结构,如Standford研发的SR系列、中山大学研发的OE系列等。在数字锁相放大器的实现方式上,相比于在DSP、Labview等平台上实现锁相算法,基于可编程逻辑器件FPGA的实现方式在并行处理能力和实时性上都具有明显的优势。本文的研究工作着眼于实际课题,对相关检测原理在微弱光电信号测量中的应用作了分析,对锁相放大器的国内外研究现状进行了介绍;以Altera公司的FPGA芯片EP4CE115F29C7N为数字信号处理平台,结合16bitADDA转换模块,设计了基于正交矢量型结构的数字锁相放大器系统,其可以对输入信号频率进行自适应跟踪,同时对单频干扰具备自适应滤除。该系统主要包括以下几方面开发工作:1.结合基于FFT的载频估计和数字锁相环技术实现了系统的快速频率自适应跟踪功能。详细分析了系统中应用到的两种性能优异锁相环的实现(平方锁相环和Costas环)、DDS技术、FFT载频估计模块。2.对系统中多处使用到的各种不同类型与参数的滤波器,对其设计方法和实现过程进行了详尽介绍。主要包含FIR滤波器的FPGA实现;通过使用多速率处理技术(降采样技术)在大大降低FPGA资源消耗的情况下,实现带宽为0.1Hz的窄带低通滤波,对于降采样中常用的CIC滤波器和HBF半带滤波器的特性与设计方法进行了介绍。使用误差的符号LMS算法,在FPGA中实现了自适应陷波器,其可以有效滤除50Hz工频干扰和100Hz照明干扰。3.测试系统的频率跟踪范围、跟踪速度和精度,以及系统的抗噪声性能;并给出该系统的整体测量结果,该系统的实测频率自适应范围为(0.02,8000)Hz,此范围内仿真频率跟踪精度达10-4Hz,系统带宽0.1Hz,平均相对测量误差为0.87%。剖析了在系统中有可能引入误差的多种因素,给出了相应的解决思路。