【摘 要】
:
近些年来,国内外学者把更多的精力放在了研究包含非局部分数阶Laplace算子或者更一般的微积分算子上面。从非局部算子的数学理论角度来看,这些区域算子所表现出的有趣特征使得
论文部分内容阅读
近些年来,国内外学者把更多的精力放在了研究包含非局部分数阶Laplace算子或者更一般的微积分算子上面。从非局部算子的数学理论角度来看,这些区域算子所表现出的有趣特征使得它们非常具有吸引力。 本文主要研究如下分数阶Schr(o)dinger方程解的存在性: (-△)αu+V(x)u=f(x,u)+λ|u|2*α-2u x∈RN 其中(-△)α是分数阶Laplace算子,0<α<1,λ>0,2*α=2N/(N-2α)是临界Sobolev指数且N≥2,势函数V(x)满足一些额外的假设条件。根据分数阶Sobolev空间中的集中紧性定理、山路引理和合适的截断技巧,在不假设次临界非线性函数f满足(AR)条件的情况下,得到上述Schr(o)dinger方程非平凡弱解的存在性。
其他文献
为了维护信息管理系统的安全,构建强健的权限管理访问控制系统是十分必要的。
本文首先介绍了基于角色的访问控制(RBAC)理论及其发展历程,研究分析了RBAC的基本思想和特
在本文中,我们对带Korteweg压强的可溶液体模型解的存在性问题作了探讨和研究。我们主要关心的是三维光滑有界域上模型弱解的整体存在性,在更高正则性条件下解的局部唯一性。基
微分形式作为研究当代数学的一个有力工具出现在偏微分方程、代数拓扑、微分几何等许多领域中.同时,微分形式的出现也为数学物理,包括量子场论、基本粒子物理等学科的研究方法
图像分割作为一种从图像处理到图像分析的关键技术,已经成为图像处理和计算机视觉领域内的基础问题。近些年来,国内外涌现出越来越多的图像分割方法,相比传统的分割方法,基于
随着当今社会经济技术的不断发展,信息技术也发挥着其越来越重要的角色.学生作为新世纪的接班人,在接受教育教学的过程中,必须掌握符合社会发展要求的能力,尤其对于小学学生
我国的基础教育课程改革是由国家引导的自上而下实施的,伴随着改革的步伐我们已经度过了将近十个年头。2010年以前普通高中新课程改革将在全国全面实施。
教材是学生获
聚乙烯蜡、内润滑剂均改变了塑料模板材料的流动性。研究不同用量聚乙烯蜡对塑料模板材料性能的影响;内润滑剂对材料的塑化时间、塑化扭矩以及产品力学性能的影响。
连分数分形理论是由Janik在一个丢番图逼近问题中提出的,Janik主要考虑的是部分商有限的连分数集E和部分商不超过α的Eα连分数集,并且他证明了dimHE=1,1/4
Brine,which is used to produce high-purity magnesia,was purified by XSC-700 to remove boron.Boron adsorption capacity of XSC-700 was investigated by varying the
随着社会的发展和制度的演变,师生关系中两个主体之间的关系也在发生着转变,二者之间的矛盾也分别具有不同的表现。本文以人并无质性差异为支点,从微观角度聚焦了学生在师生关系