论文部分内容阅读
太阳能空调具有很好的季节匹配性,夏季太阳辐射越好时系统制冷量越大,规模化应用能够有效缓解夏季空调用电负荷。但太阳辐射能量密度较低且受天气影响较大,太阳能空调存在间歇性和不稳定性等问题;另一方面,很多场合太阳能装置安装空间有限,一定程度上限制了其推广应用。提高太阳能空调循环效率,减小集热器安装面积;实现多能互补,解决其运行稳定性,是太阳能空调发展的主要瓶颈。围绕上述问题,本文提出太阳能驱动风冷吸收式制冷与蒸汽压缩空调耦合循环,实现太阳能空调高效化和稳定性,利用太阳能制冷改善蒸汽压缩制冷循环效率,利用电驱动蒸汽压缩循环结合实现太阳能空调系统的稳定性。风冷溴化锂吸收式制冷循环由于冷却温度的限制,在独立制冷时对热源温度要求高,相应降低了太阳能集热系统效率,同时系统存在溶液结晶风险高的问题。本文提出了风冷吸收式制冷与蒸汽压缩式空调之间的过冷却式和复叠式两种耦合循环方式,揭示了其能量耦合机理,论证了通过耦合方式可以充分利用较低温度水平的太阳能热能,拓宽太阳能热能的温度利用范围,实现节约压缩机电能和提高太阳能制冷转换效率双重目的。为解决太阳能空调系统长时间运行的连续性和稳定性问题,本文基于吸收式与蒸汽压缩式系统冷量与热量的同步耦合方式,提出了蒸汽压缩式热泵驱动溴化锂浓度差蓄冷的新循环。新循环在蓄冷过程中除热泵系统外无需其他形式的能量输入,蓄冷过程不受环境条件影响和制约,蓄冷能量密度大且热损小。通过该循环可以实现削峰填谷,保证太阳能空调系统长周期运行的连续性和经济性。建立了风冷吸收式与蒸汽压缩式制冷循环及相关耦合系统的理论模型。搭建了风冷吸收式溴化锂制冷机实验台,并进行了不同运行工况下的性能测试。在此基础上提出采用绝热闪蒸流程改进风冷溴化锂吸收式制冷的新循环,避免了二次换热损失,降低了对热源温度需求,从而提高COPth(thermal coefficient of performance)。新循环中蒸发器内无需设置用于降膜蒸发的铜管阵列以及冷冻水循环泵。可以节省材料和水泵的使用,减小了系统尺寸和重量。采用新循环的系统在热源温度为80℃90℃,环境空气温度为29℃35℃时可以正常运行,最低蒸发温度8.6℃,COPth最高为0.76。在9小时的室外动态测试过程中,系统可以较好地适应热源水温和环境空气温度动态变化,蒸发温度波动范围为10.4℃11.4℃,系统平均COPth为0.65。在此基础上,进一步搭建了相关实验系统对耦合循环及热泵驱动浓度差蓄冷系统进行了实验研究。结果显示,在热源水温为70℃90℃之间时,复叠式耦合系统可以将COPele,HP(electrical coefficient of performance of heat pump)由2.66提高至4.286.97,与蒸汽压缩空调循环独立运行时相比增加60.9%162.0%。同时,通过构建的额定制冷量与输入功率分别为40kW与10kW的热泵/太阳能驱动蓄冷/制冷一体系统性能实验结果显示,热泵驱动浓度差蓄冷模式下总蓄冷量为110.5kWh,蓄冷能量密度ESD(energy storage density)为77.8kWh/m3,蓄冷密度大且热损小。一个完整的蓄放冷循环中蓄冷效率ESE(energy storage efficiency)为2.81。以上实验结果验证了利用电驱动蒸汽压缩循环的耦合实现太阳能空调系统的稳定、高效和连续运行的可行性。最后,基于实验结果和系统仿真模型,对风冷溴化锂吸收式制冷系统的参数优化以及与太阳能集热器类型的匹配进行了分析。研究了不同热源驱动温度和吸收式子系统蒸发温度对过冷却式与复叠式耦合循环的性能影响。讨论了在两种耦合系统中太阳能热能的利用对系统性能的影响,给出了不同工况下的最优参数组合。结果表明:过冷却式耦合系统具有更高的?效率且热量需求小,与蒸汽压缩式系统独立运行相比可将COPele,sys提升15.9%29.8%,较为适合太阳能集热器面积安装受限的场合,以提高单位集热器面积的制冷转化率。复叠式耦合系统对热量的需求为过冷却系统的4.5倍以上,但其吸收式子系统既可以在热源温度不足时构成耦合系统运行降低耗电量,也可以吸收式制冷方式独立运行。热泵驱动浓度差蓄冷系统中,COPele,HP与ESE均随着蓄冷浓度差的升高而下降,且导致吸收式循环发生热和热泵冷凝热之间的不平衡率ψ由0.11增加到0.26。COPele,HP与ESE随热泵子系统蒸发温度升高而下降,但幅度较小。在稀溶液初始浓度越低时,ESE越高:4%浓度差下,当溴化锂稀溶液初始浓度由52%上升至57%时,ESE下降了约34.4%。ESD随稀溶液初始浓度变化较小,但当蓄冷浓度差由1%增加至8%时,平均蓄冷能量密度由19.8 kWh/m3升高至140.2 kWh/m3。