表面修饰的金纳米粒子及其自组织而成的结晶体的制作及其表征

来源 :暨南大学 | 被引量 : 0次 | 上传用户:qwaxjl
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
通过硼氢化钠NaBH_4还原氢金氯四HAuCl_4,成功地制作了羧酸酯表面修饰的金纳米粒子。在这一反应过程中,溶液里还原得到的金属原子会集聚成稳定核,然后不断吸附其它的原子和原子团,长大成金纳米粒子的结晶核,同时,用丁二酸硫醇(MSA)作为硫醇配体稳定剂,使表面修饰稳定剂在金结晶核的表面形成一层致密有规则排列的单分子膜,通过控制MSA与HAuCl_4初始溶液的物质的量的比,来控制结晶核的大小和形状,实现对金纳米粒子粒径的控制,制作出粒径较大的纳米颗粒和纳米棒。制得的金纳米粒子再经过粒经筛选,得到粒径一定的纳米粒子,然后,将其溶解成一定浓度的溶液,并加入一定量的浓盐酸,制成微米级的自组织结晶体。在此基础上,对金纳米粒子和其自组织结晶体进行了一系列的X射线衍射仪(XRD)、透射式电子显微镜(TEM)、光吸收谱和扫描隧道显微镜(STM)的检测和分析。检测结果表明,金纳米粒子都为面心立方结构,表面修饰稳定剂丁二酸硫醇(MSA)分子的单分子膜确实存在于金纳米粒子的表面。并通过计算机模拟分别讨论了MSA分子在两种不同的金晶面的分布结构,得到的结果与相关的实验研究结果是一致的。
其他文献
众所周知,光与物质相互作用,物体会受到光束传播方向上的光压。但是,近几年的报道,人们得到了一个反物理直觉的结果,即在某些特殊情况下,物体在光场的作用下朝向与光源传播的方向相反的方向运动,我们称物体受到光学牵引力。这一反物理直觉的现象引起大家极大的关注。人们虽然提出光束牵引这一现象,并在理论上验证了光场中出现光学拉力的可能性,但是对光学牵引力的本质的认识还不够深入,光与物质相互作用的很多规律仍需探索
本工作采用Monte Carlo方法,根据辉光放电理论,利用“伪碰撞”技巧和重整化方法成功模拟了电子在非均匀电场中的输运过程。通过研究电子的雪崩过程及各种正离子的分布情况,计算了采用电子辅助热丝化学气相沉积(EACVD)技术低温合成金刚石薄膜过程中的电场分布及其变化规律,结果指出在某些气压、偏压下,阳极附近将出现反向电场,该反向电场在金刚石薄膜的低温合成中起重要作用。所得结果为建立EACVD低温合
近年来,基于液体材料与光纤微腔结合的新型光纤传感结构受到广泛关注。由于液体材料能对光纤微腔中的光信号直接进行调制,因此能大幅度提高光纤传感结构的灵敏度。这种新型光纤
20世纪30年代末期,Jelly和Scheibe发现一种特殊的超分子聚集体—J-聚集体,它具有尖锐且相对其单体红移的吸收带的独特光学特性。在本论文中,研究一种异花氰染料(PIC-Br)使用垂直
高能质子—质子弹性散射对于理解强相互作用的基本理论——QCD理论和寻找新的物理都是一个很重要的课题。由于两个碰撞粒子之间没有量子数的交换,因此该过程是一个单纯的绕射
上个世纪后半叶,人们揭示出非线性系统中的混沌现象,并进一步将混沌理论用于密码学研究,得到了一些新的加密通信技术,也广泛应用于军事、电子商务等领域。 本文主要研究超混沌
长久以来,“笔下功夫”一直为人们所重视。在考试中,写作的分值占到整张语文试卷的30%左右,而且不只是对语文这一学科,更对其他的学科的学习有重要意义,所以要想取得理想成绩
该论文主要包含两个相对独立的部分:其一,是有关衍射光学及在惯性约束核聚变中可能应用的研究,即第一章至第六章.另一部分即该文的第七章,是作者在日本国立电气通信大学留学
学位
太赫兹波曾被称为远红外射线,其波长介于微波与红外波之间,研究领域属于电子学和光子学的交叉领域。太赫兹系统以其特殊的频率位置兼具了电子学系统和光学系统的优点。所以,太赫兹波在生物医学成像,材料表征,高速通信和国土安全等领域的应用存在巨大潜力。近年来,人们对太赫兹波段光电子器件的需求急剧增加,这可以从太赫兹光学元件的发展中看到。然而,相比于激光技术,太赫兹技术转化为实际应用受限于诸多关键器件的发展不完