论文部分内容阅读
随着工业化大规模的发展,重金属广泛分布于各种水体,通过饮水、食物链以及生物富集等方式正在严重危害人体健康。重金属的监测迫在眉睫。中国海域海水水质污染加剧,特别是近岸海域污染严重,海洋生态系统继续恶化,因此,在“十五”期间国家提出了建立国家海洋生态环境现场快速监测示范系统的计划,通过海上实时采样、检测和分析来监测海洋水质的状况,从而能够快速做出决策以防止和制止污染的扩散。另一方面,重金属传感器的研究及其实时检测技术也是目前国际上一个重要的前沿研究课题。基于上述原因,本论文以重金属离子选择传感器及其在海水分析中的应用作力主要研究内容,该研究得到了国家863高技术项目、国家自然科学基金委国际合作中俄专项基金以及浙江省国际合作重点项目的资助。 本文所作的主要工作如下: 1) 提出了一种光寻址电位传感器(Light-Addressable Potenntiometric Sensor, LAPS)等效电路模型,对模型中各参数的影响进行了评估分析,把电化学动力学理论与半导体能带理论相结合,对LAPS的原理进行了新的阐述,指出静电电位(外置偏压和电解质溶液离子强度引起的静电吸附电位)会改变LAPS的Fermi能级,影响空间电荷区的厚度,从而影响光生电流;离子交换产生的特性吸附会影响LAPS的平带电位,从而改变空间电荷区电容,导致影响光生电流。最后,基于等效电路模型和LAPS原理,对重金属薄膜LAPS传感器进行了优化设计。 2) 首次研制出了基于LAPS和脉冲激光沉积(Pulsed Laser Deposition, PLD)技术的一种玻璃态结构的Fe离子选择薄膜传感器。合成了一种Fe离子选择电极(Fe—ISE),并对其性能进行了研究。以该电极为PLD的靶材,在LAPS上制备了一种玻璃态结构的Fe薄膜传感器(Fe-LAPS)。该传感器的线性区间为10-2~10-5 mol/L,标准曲线的斜率为435nA/decade,检测下限为6.31×10-6mol/L,适宜pH范围0~2,在浓度高于10-4 mol/L时,响应时间少于30 s,低于此浓度时,响应时间不超过2 min,标准曲线在8周内基本是可重复的。Fe—LAPS的分辨率和灵敏度比Fe—ISE提高了7.69倍。 3) 首次研制出了基于LAPS和PLD技术的一种晶体态结构的Hg离子选择薄膜传