论文部分内容阅读
干旱区草原退化已成为严峻的生态问题,内蒙古牧区草畜关系和畜牧业发展正面临着严峻挑战,随着大数据技术和云计算平台的发展改变了地学和生态学的研究模式。草甸草原在内蒙古广泛分布,是我国重要的草地资源和景观群落。通过将草甸草原的生态系统服务价值进行货币化度量,量化区域景观生态风险等级以及监测草原关键的生态参量,为精细化草原保护和利用的相关政策提供数据参考。对我国生态可持续发展和生态文明建设具有重要意义。本文选取内蒙古草甸草原区为研究对象,在大数据云平台的基础上以数据驱动的方式在多个维度展开研究。在谷歌地球引擎的基础上集成,将样地实测的生态参量、气象观测数据、物候观测数据等地面数据,结合Landsat 8、Sentinel-2、MODIS等遥感卫星数据构建天地一体化的评价方式,基于地理格网计算、机器学习、混合像元分解、经验模型构建等多种方法,开展草原生态评价和监测研究。研究重点包括草甸草原区土地覆盖时空分布分析、景观生态风险变化分级评价、生态系统服务价值的时空调节及货币价值核算、草甸草原的基本生态参量反演、草甸草原区牧草产量和载畜量估算以及草原退化检测等多个维度研究结果显示:(1)内蒙古草甸草原区草地恢复明显,生态风险可控。草甸草原区的土地利用特征与内蒙古全域有相似性,具体表现为草地面积逐渐上升,同时相较于全域,草甸草原区的草地面积恢复速度更快。但没有大型的人口聚集区、没有成规模的河湖湿地,未来应继续重视天然草原的保护,坚决抑制天然草原被开垦为农田。草甸草原区景观生态风险水平总体偏低,个别地区有中等或者较高的风险水平,需要引起警示。(2)生态系统服务价值逐年上升,其中贡献最大的地类是草地,其中气候调节能力产生了最大的价值。草甸草原区最重要的生态系统服务功能是调节功能,而气候调节功能是重中之重。其价值贡献其次为森林和农田等生态系统,而时间则主要是4~10月份的生长季。由此表明内蒙古的草甸草原区保护应放在生态建设的首位。(3)草甸草原区的牧草盖度和长势具有向好的趋势,返青监测反映了地面真实情况。牧草盖度和长势的定量反演和定性分析均取得了较好的结果,满足监测需求。相较于线性回归模型,应用混合像元分解模型反演草甸草原盖度结果与实际情况更加符合,一方面是线性回归模型简单,不能充分挖掘波段与盖度之间的关联,另一方面混合像元分解能够充分保留草原的植被光谱特征。分析盖度与气象环境因子之间的相关性发现降雨量是影响牧草盖度的重要因素。返青监测结果与地面物候采集数据具有强相关性且准确地表达了返青的时序特征和空间分布特征。(4)牧草产量逐年提升,降水是影响产量的决定性因素。分别利用Landsat 8、Landsat 7、Sentinel-2、MODIS影像的原始波段及相关衍生波段构建产量一元及多元统计模型,经模型验证精度对比分析,基于Landsat 8数据构建的多元线性模型精度最优,应用该模型进行时空分析制图,发现草甸草原区2013-2019年产量总体呈增加趋势,这和盖度像元二分模型监测结果相对应,也与基于MODIS数据产品土地利用研究结果一致,不同数据源和不同算法得到的草原参量一致性可以佐证结果的可靠性。研究结合产量进行载畜能力分析及专题化制图,获得了 2019年内蒙古暖季和冷季的载畜量专题图。分析产量与气象环境因子之间的相关性,发现研究区降雨量是影响产量的重要因素。(5)应用随机森林模型反演草原沙化具有较高精度,可推广至全区域草原沙化反演。基于草原沙化地面采样数据分别构建随机森林模型和混合像元分解模型,利用模型反演结果分析草甸草原区草原沙化的时空分布特征。由于混合像元的端元提取具有较大误差及不确定性,导致混合像元分解反演沙化精度较低,而基于随机森林模型能取得较高的精度,总体精度为0.6383,卡帕系数为0.4495。草原沙化随机森林模型可以用于全域时序空间制图。