新型氟硼吡咯无重原子三重态光敏剂的研究

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:zsdown520
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
三重态光敏剂在许多领域有着广泛而独特的应用,而传统的三重态光敏剂的系间窜越能力大多基于重原子效应,不可避免的存在一定的应用限制。相较于重原子光敏剂,无重原子光敏剂在延长三重态寿命、降低生物毒性以及降低原料成本等方面有着独特的优势,因此正逐渐受到广泛的关注,然而,对该类型的三重态光敏剂的研究仍有不足,如分子构效关系对光敏剂的性质的影响不清晰、发色团种类较少、部分机理的内在驱动因素不明等。因此本文研究了基于自旋轨道电荷转移系间窜越(SOCT-ISC)和扭曲构型促进系间窜越两种机理的氟化硼络合二吡咯甲川(Bodipy)化合物的设计和应用,期望能够为无重原子三重态光敏剂的设计与开发提供一定的理论支持。具体研究内容如下:基于SOCT-ISC机理,设计并合成了具有不同电子给受体(D-A)取向和连接方式的电子给受体化合物,研究了化合物的分子构型以及D-A取向对于SOCT-ISC效率的影响。获得了具有强可见光吸收能力(在504nm处,ε=7.4×104 M-1 cm-1),高效ISC(ΦT=54%)和长三重态寿命(τT=539μs)的无重原子三重态光敏剂BDP-PXZ-1,并应用于TTA上转换中,以苝为受体实现了 12.3%的上转换量子产率。在此基础上,合成了以Bodipy为电子受体,噻吩为电子传递基团,连接不同给电子能力的基团,研究了给电子体的给电子能力对SOCT-ISC效率的影响,并应用于TTA上转换领域。将Bodipy发色团替换为在红光区有强吸收的styrylBodipy发色团作为电子受体,吩噁嗪为电子给体,获得了吸收波长在红光区的基于SOCT-ISC机理的具有长寿命三重态的化合物,将styrylBodipy发色团的三重态寿命延长至333 μs,是基于重原子效应的光敏剂的180倍。研究了基于扭曲构型促进系间窜越机理的Bodipy衍生物的光物理与三重态性质,获得了具有扭曲构型的三重态光敏剂(扭曲角为17°),该化合物具有高效ISC(ΦT=56%)和较高的三重态能级(约为1.5 eV)。因为不存在重原子,在溶液中获得了长寿命的三重态(197.5 μs),而且在光敏剂掺杂的聚合物薄膜中获得了超长寿命的三重态(4.5 ms),分别是碘代Bodipy和碘代styrylBodipy化合物的6倍和2500倍。通过理论计算推断,增强的ISC的内在驱动因素为自旋轨道耦合矩阵元的增大和S1态与T2/T3能级的匹配。时间分辨顺磁光谱证明该光敏剂的ISC机理不同于重原子效应的自旋轨道耦合系间窜越(SO-ISC)。并将该光敏剂应用于体外光动力治疗,获得了高光毒性(EC50=1.0μM)和低暗毒性(EC50=78.5 μM),拓展了光动力治疗试剂的种类范围。
其他文献
随着计算机技术的进步和数值仿真分析方法的发展,在船舶设计领域提出了基于数值仿真分析的设计(SBD)。SBD技术通过数值仿真分析方法对船舶各项性能进行评估,同时利用最优化技术和重构技术探索设计空间,最终获得给定约束条件下性能最优的设计方案。该技术有效地集成CAD、CFD和最优化理论等多个学科,将其直接应用于船舶设计,有效驱动船舶设计过程,创新发展了传统优化设计思维模式,是当前国际船舶设计领域研究的热
目前,恶性肿瘤相关生物标志物的发现,以及针对性地开发出高效便捷的检测手段已成为癌症早期诊断研究的热点。研究表明,恶性肿瘤细胞内的非编码微小核糖核酸(MicroRNA,miRNA)通常在患病早期的细胞或组织中即会产生明显的表达含量异常,能够作为重要的恶性肿瘤相关生物标志物。本论文将荧光检测方法与特定设计的脱氧核糖核酸(Deoxyribonucleic acid,DNA)序列相结合,构建对癌细胞中mi
减振降噪是提高乘坐舒适性和结构性能的关键,是汽车设计的重要环节。除利用减振器耗散振动能量外,振动能量俘获是实现车辆减振降噪的另一可行方法,是绿色能源的发展方向。俘获的能量可为车载无线传感器、控制器等电子设备提供电能。为满足越来越多的自供电需求,需要研发高性能俘能器。车辆振动通常由300Hz以下的多频振动混合而成,具有低频宽带特点。常用压电俘能器具有较窄的响应频段和较低的能量转换效率,严重制约了压电
不确定性现象广泛存在于实际工程中,其常见的表现为结构尺寸、材料属性、外部载荷等因素的随机性。这些不确定性会通过结构传播到响应上,导致结构的响应并非一个固定的值,而是表现为某种统计或概率特征。所以,准确分析结构响应的不确定性对评估结构的性能具有重要意义。近年来,基于概率论和数理统计理论发展而来的不确定性分析方法,如:可靠性分析方法,灵敏度分析方法等,越来越多地被应用于实际工程。这些不确定性分析方法中
分布式麦克风阵列是由多个麦克风节点构成,用于对空间中的声音信号进行采集和处理的一种无线声传感器网络。随着声学传感器、无线通信和分布式信号处理的快速发展,基于分布式麦克风阵列的音频处理技术得到高度重视,并在语音交互、智能家居、汽车电子、安全监控、环境监测等领域具有广泛应用。在麦克风阵列的应用中,通常需要估计声源的位置信息,以便完成后续的音频处理任务,但受到环境噪声和房间混响的影响,声源定位至今仍是一
核燃料组件是核电站反应堆的核心和关键部件,随着我国核电机组的不断增加,核电在我国能源比重中不断增大,自主核燃料研发对保障我国核燃料供应安全和“走出去”具有非常重要的作用。由流致振动引起的格架与燃料棒磨蚀是近几十年来压水堆燃料棒破损的最主要原因,流致振动问题是自主核燃料研发中关键技术问题之一,必须开展深入研究。同时在许多工程领域中也存在流致振动问题,从学科角度考虑,对核燃料结构流致振动问题进行深入研
理解托卡马克中的高能量粒子物理问题对实现未来聚变堆稳态长脉冲运行是非常重要的。在未来的燃烧等离子体中,氘氚聚变反应产生的3.5MeV α粒子是自加热源。此外,未来聚变堆中还存在其它高功率的辅助加热,例如中性束注入加热,射频波加热等,这些辅助加热也会产生大量的高能量粒子。这些高能量粒子在等离子体加热和电流驱动中起着重要的作用。一方面,这些高能量粒子可以通过波-粒子共振相互作用驱动各种各样的不稳定性;
聚变能是最具前景的清洁能源之一。在托卡马克等聚变装置中实现对高温、高密度等离子体的有效约束是磁约束核聚变研究的关键。实验测得的输运水平往往比新经典输运理论预测值高出1~2个量级,这类反常输运通常是由微观湍流引起的,所以又称为湍性输运。大量向外的粒子、动量和能量的湍性输运将显著降低等离子体的约束性能、制约等离子体的自持燃烧。因此长期以来输运与约束改善是托卡马克等离子体物理研究的核心问题之一。高约束型
隆脊叶蝉族Paralimnini是角顶叶蝉亚科中较大的族,全世界已知139属931种,广泛分布于全球各地。该族昆虫在维管植物的韧皮部刺吸取食,夺取植物营养、造成机械损伤,主要为害禾本科植物,许多种类传播病原物,造成更大危害。隆脊叶蝉族昆虫外部形态相似,主要通过雄性生殖器特征进行区分,属间关系不明确,而且许多区域缺乏研究。中国和德国是旧世界东西两侧生物多样性丰富的国家,但对该族缺乏系统研究,家底不明
燕麦冠锈病是由柄锈菌属冠锈菌燕麦专化型真菌(Puccinia coronata f.sp.avenae Eriks.)引起的一类主要真菌病害,发病时会造成严重的产量损失。培育和种植抗病品种是防治冠锈病最经济有效的措施。基于当前生产上流行的燕麦冠锈病生理小种或致病类群,鉴定一批可直接用于燕麦冠锈病抗性育种的优异种质,并解析其抗性遗传特性、通过现代分子生物学技术发掘其抗性基因,开发分子标记并结合分子标