论文部分内容阅读
将来源于水母的绿色荧光蛋白基因(gfp)和来源于E.coli转座子Tn10的四环素阻遏蛋白基因(tetR)共同构建到E.coli表达载体pET-30a+上,使融合蛋白两部分蛋白间插入不同长度肽联,获得TetR C-端与GFP N-端融合蛋白:TR∷GFP和TR∷GFPs.在E.coli BL21中诱导表达并纯化了两种形式的融合蛋白.TR∷GFP(蛋白间间隔19aa)保留了GFP的荧光特性,即在395nm激发,可以510nm附近有最大发射峰.在四环素存在时,TR∷GFP在400nm-700nm范围内的荧光强度普遍增强,在510nm处增幅最大,由原来1.132增至2.214,增幅为95.6﹪,而四环素对相同浓度的GFP与TetR荧光影响不大,表明TR∷GFP,能感受外界四环素.TR∷GFPs(蛋白间间隔5aa)具备GFP荧光性质,但不具备感受四环素能力.对其中GFP部分定点突变(T203Y),获得发射荧光红移的突变融合蛋白(TR∷GFPsm).在E.coli BL21中诱导表达并纯化了TR∷GFPs和TR∷GFPsm,TR∷GFPsm经395nm激发,在526nm处出现最大发射峰;在四环素存在时,TR∷GFPsm在400nm-700nm范围内荧光强度普遍增强,以526nm处增幅最大,由原来20.33增至41.6,增幅为104.6﹪;而四环素对相同浓度的GFP与TetR荧光影响幅度较小,表明TR∷GFPsm,能感受外界四环素.用不同浓度的tc滴定TR∷GFPsm,显示4.1218μM的TR∷GFPsm随着tc浓度的增加,荧光强度相应呈指数增长,最终达到饱和.初步说明TR∷GFPsm具有tc生物传感器性质.为了使TetR与四环素结合所产生的构象变化能更好地传递给GFP,将TetR插入到GFP171aa-172aa,构建了GFP与TetR中间融和蛋白GFP()TR,在E.coli BL21中诱导表达,该融合蛋白失去荧光性质.为了获得对四环素更为敏感的传感器,用易错PCR构建了TR∷GFP和TR∷GFPsm突变体库,初步摸索了平板筛选荧光突变体的方法.