【摘 要】
:
氢能源是未来发展的重要方向之一,电解水制氢是最清洁、最可持续的制氢方式。目前,电解水制氢最有效的电催化剂仍是贵金属基催化剂,而贵金属价格昂贵,储量有限,因此不利于大规模应用。相比之下,非贵金属电催化剂价格低廉、资源丰富且环境友好,有望成为贵金属材料潜在的替代者,实现电解水制氢的大规模工业生产。然而,非贵金属电催化剂的活性不高,因此高效非贵金属电催化剂的设计研究,仍是一项颇具挑战性的工作。本论文通过
论文部分内容阅读
氢能源是未来发展的重要方向之一,电解水制氢是最清洁、最可持续的制氢方式。目前,电解水制氢最有效的电催化剂仍是贵金属基催化剂,而贵金属价格昂贵,储量有限,因此不利于大规模应用。相比之下,非贵金属电催化剂价格低廉、资源丰富且环境友好,有望成为贵金属材料潜在的替代者,实现电解水制氢的大规模工业生产。然而,非贵金属电催化剂的活性不高,因此高效非贵金属电催化剂的设计研究,仍是一项颇具挑战性的工作。本论文通过创新的熔融盐法制备了储量丰富、价格低廉的过渡金属硫化物(硫化钨、硫化钴和硫化镍),以它们为基础,通过缺陷工程和异质结调控等策略,优化电催化剂的电子结构和催化活性位点,构筑适合于电解水和电催化氧化污染物的催化剂,并结合理论计算和实际测试探究过渡金属硫化物电催化过程的机理。本论文的主要研究内容如下:(1)通过简单的熔融盐法合成了WS2材料,并通过改变前驱体的混合程度调控了硫空位浓度,在碱性电解液中显示出理想的析氧反应和析氢反应性能。硫空位的引入调节了WS2的电子结构,提高了电催化性能。此外还通过使用诺氟沙星氧化反应代替水氧化反应提高产氢性能,达到相同的电流密度时,诺氟沙星基电解池所需的池电压和典型的水基电解池的几乎完全相同,而使用诺氟沙星基电解池生产氢气的同时可以降解诺氟沙星,和水基电解池相比,耗电量也没有增加。(2)通过简单的熔融盐法合成了多元硫化钴复合材料,并通过改变前驱体的空间位置分别构建了一元、二元和三元硫化钴,在碱性电解液中显示出理想的析氧反应和析氢反应性能。三元异质结调节了电子结构,促进水的吸附和解离。达到50 mA cm-2的电流密度时,诺氟沙星基电解池仅需要1.47 V的池电压,比传统的水基电解池低0.80 V,降低了35.2%。(3)通过简单的熔融盐法合成了NiS/NiS2复合材料,在酸性和碱性电解液中都显示出理想的析氧反应和析氢反应性能。Ni S/Ni S2异质结结构具有较低的Gibbs自由能,有利于氢的吸附/脱附。在中性电解液中,达到10 mA cm-2的电流密度时,甲醛基电解池需要2.52 V的池电压,比传统的水基电解池低0.33 V。此外,在池电压为3 V的情况下运行2小时后,2 mg L-1的甲醛被降解了90.4%。本论文中的双功能电解池可以生产氢气的同时降解污染物,具有高度节能和环保的特点,能够为进一步开发同时产氢和降解污染物的电解系统提供有价值的借鉴。并且能够为开发优秀的电催化剂提供一定的依据,对电解水产氢具有重要意义。
其他文献
传感器是信息获取的关键部件,随着柔性可穿戴电子产品的市场需求快速增长,亟待发展不同检测功能的柔性传感器。近年来纸张材料因其柔性、低成本、亲水、可再生、可降解、绿色环保等特性,在柔性传感器领域展现出广阔的应用前景;但如何将纸张材料、电极材料与敏感功能材料有机融合,发展不同检测功能的柔性纸基传感器仍面临诸多挑战。针对这一现状,本论文围绕普通的打印纸发展了一系列包括湿度、压力和弯曲应变检测的多功能柔性纸
近年来,极端气候事件频发,对人类健康、社会经济以及生态系统产生了巨大的影响。然而,极端气候事件的动力学机制极为复杂,与之相关的研究尚不成熟。由于极端气候事件的时间尺度大多介于次季节到年际尺度之间,以往研究通常会从年际尺度的角度出发,重点关注热带太平洋海温信号(如ENSO,El Ni(?)o-Southern Oscillation)在其中的作用。虽然热带海温异常信号为极端气候事件的发生提供了有利的
现代无线通信是我国智能化社会建设的重要引擎。随着智慧医疗、智能制造和智能交通等新型智能化应用的不断涌现,无线通信亟需借助多种通信系统以支撑多样化业务并提升核心技术指标,其发展进而呈现出多种通信系统共存的态势。在频谱与能量等通信资源受限的情况下,多种通信系统需要进一步利用资源共享来提高资源利用效率。因此,如何通过资源共享实现各种系统间的高效共存已成为无线通信研究的重点。共生无线通信(Symbioti
基于有机电致发光器件(OLED:Organic Light-Emitting Device)的显示技术由于具有柔性超薄、主动发光、色彩逼真等特点在当今与未来显示技术领域占有举足轻重的地位。国际电信联盟(ITU:International Telecommunication Union)推出了显示器的B.T.2020(Broadcast Television 2020)色纯度和色域标准,要求能够完美
5G通讯时代背景下,电子元器件市场需求的迅速扩张使得能够用作其关键材料的微波介质陶瓷的开发应用迎来了新的机遇。从持续探索新型微波介质陶瓷体系、丰富各个介电常数范围的材料到逐渐剖析影响微波介电性能的因素,已经涌现了大量关于介电损耗机理的研究,但微波介质陶瓷种类繁多、结构不同、性能迥异的特点,使得如何快、准、精地改善微波介质陶瓷材料的性能成为该领域难以突破的瓶颈。影响微波介电性能的外部因素可通过实验工
随着人口的快速增长和工业污染的加剧,淡水资源短缺已逐步成为全球亟待解决的问题之一。近年出现的光热海水淡化技术,因其具有光热转换效率高、环境友好、无污染等优点而被广泛研究。光热材料、高效水蒸发结构研究是本领域研究的核心;此外,如何提升高盐海水中的耐盐性能和实现多功能集成,也是近期研究的热点。针对上述问题,本论文在对碳纳米管网络微观结构调控和表面可控修饰的基础上,提出了通过亲水疏水碳纳米管网络来构筑温
锂金属电池因其极低的氧化还原电位、超高的理论能量密度而成为当前国际研究前沿与热点。然而,锂枝晶不可控生长导致的循环稳定性差、安全性低等问题严重制约了锂金属电池商业化进程。针对锂金属电池的这些问题,本论文以低成本过渡族金属氮化物为研究对象,分别在隔膜表面、锂金属负极表面及三维骨架上设计、构筑亲锂的金属氮化物纳米功能材料,系统研究其对锂枝晶生长与电化学性能的影响规律,理论计算结合实验表征分析揭示了其电
计算机视觉作为新一代人工智能的重要领域,它的蓬勃发展会对国计民生产生重大的积极作用。计算机视觉领域的核心要务是效仿人类视觉系统让计算机理解数字图像或视频中的视觉内容。当下计算机视觉领域中一些视觉认知任务已经取得了长足的进步,诸如图像识别和实例检测等任务。然而孤立地识别和检测实例并不能充分地理解图像中的场景内容,实例与实例之间丰富的关系对理解图像的场景内容也至关重要。因此本文关注于如何探索视觉信号中
功能梯度磁电弹材料作为一种新型复合智能材料,兼具压电材料与压磁材料的优良特性,且材料属性沿空间某方向呈梯度连续变化,内部界面不明显,优化了材料内部的应力分布,具有传统层状复合材料无法比拟的力学性能。功能梯度磁电弹材料最大限度地降低了不同材料之间的性能差异,且其具有优良的多物理场耦合效应,因此,该材料在信息技术、航空航天技术、微机电技术等高新尖技术领域得到了广泛的应用。为进一步发挥功能梯度磁电弹材料
非辐射电磁源最早是在量子力学和天体物理学中被提出来的,然而由于缺乏合适的研究体系,在很长一段时间内它在光子学领域并没有得到太多的关注。随着近二十年来超构光子学的快速发展,超材料和超表面表现出对电磁波强大的调控能力,同时得益于相关理论的提出,人们逐渐发现具有非辐射特性的光学模式在捕获入射光、增强局域电场强度、调控远场散射以及调控微纳米尺度的非线性效应等方面具有非常大的潜力。超表面,特别是具有增强光与