【摘 要】
:
本文的研究对象为奇异摄动Volterr积分微分方程,它来源于许多物理和生物问题,如扩散耗散过程,流行病动力学等。由于小参数的存在,解在很小的区域内变化非常剧烈,即所谓的边界
论文部分内容阅读
本文的研究对象为奇异摄动Volterr积分微分方程,它来源于许多物理和生物问题,如扩散耗散过程,流行病动力学等。由于小参数的存在,解在很小的区域内变化非常剧烈,即所谓的边界层和内部层现象。另一方面,方程中积分项的存在,表明该问题具有记忆性质。因此,寻求奇异摄动Volterra积分微分方程的高精度数值方法面临着“层”现象和长时间的双重挑战,从而对该问题数值方法的研究具有重要的理论和实际意义。已有研究发现p-version有限元方法的收敛速度是h-version有限元方法的两倍以上。而间断有限元是采用完全间断的分片多项式空间和试验函数进行数值求解,因此自由度的选择具有更强的灵活性,数值格式有更好的局部紧致性,而且能更好地模拟解的剧烈变化。本文主要研究用p型间断有限元(p-version DG)求解奇异摄动Volterra积分微分方程,并对其进行一致收敛性分析。本文首先介绍了p-versionDG方法求解奇异摄动Volterra积分微分方程的数值格式,然后严格证明了该方法在L2意义下具有一致收敛性。数值例子的运算结果验证了我们的理论分析。
其他文献
量子色动力学(Quantum Chromodynamics,简称QCD)理论预言,在某些极端环境下(如温度极高、能量密度极大的条件下),被禁闭的强子物质可能会转变成一种全新的物质状态——夸克胶
自从1963年Lorenz提出第一个混沌数理模型以来,混沌受到各个领域的关注并获得快速的发展.混沌是非线性科学中所具有的一种复杂运动,它在自然界中是普遍存在的.近些年来,关于
最近的研究发现具有π电子的多环芳香烃半导体在掺杂碱金属或者碱土金属后可以表现出转变温度为5~33 K的超导电性,这引起了科学家对于多环芳香烃有机半导体材料电磁性质的极
Scott D在1971年第一次提出了连续格的概念,从此经典Domain理论开始出现.Ray Y在1989年第一次给出了半素理想的概念并研究了它的基本性质.赵东升在1997年首次在完备格上定义
20世纪60年代末70年代,计算机理论学家D.Scott提出了Domain理论,为理论计算机科学的指称语义学奠定数学基础.但是,经典Domain理论中的二元序关系,只能够表达元素之间的定性信
为了更好地拟合数据,人们提出了许多不同形式的非参数回归模型,其中的变系数回归模型既保持了非参数回归模型的灵活性,又可以很好地克服维数灾难问题,而部分线性变系数模型作
近年来,连续格的推广引起了人们广泛的兴趣,赵东升博士引入了半连续格,伍秀华引入了交半连续格并讨论了一些简单的性质,本文在此基础上引入模糊交半连续格的概念,并深入探讨
图结构是一种广泛存在的数据结构,它具有清晰直观展现各节点之间关系的特点,是一种对现实世界的直观表达。图论作为当今图结构的理论基础,在社交网络、基因计算、社会图谱等
丢番图逼近是数论中的重要分支之一,在数学的其他方向也有着十分广泛的应用,如函数论、组合数学以及计算数学等领域。从最基本的有理数逼近到现在非常活跃的流形上的丢番图逼
随机延迟微分方程作为模拟自然现象和社会现象中“具有不确定性”和“受滞后影响”的系统行为规律的重要数学模型,在生命科学、经济学、环境科学、机械化工、控制等领域都有