论文部分内容阅读
作为自旋电子学器件的核心部分,磁性金属薄膜具有复杂的磁耦合和电输运现象以及丰富的物理内涵。两个铁磁层之间穿越非磁隔层的层间耦合和相邻的铁磁层与反铁磁层之间的界面耦合在自旋电子学器件中扮演着非常重要的角色,关于层间耦合和界面耦合的研究一直备受关注。本论文的工作是围绕铁磁层/反铁磁界面耦合问题展开的,研究了FeMn为反铁磁层的交换偏置多层膜中铁磁层/反铁磁界面磁矩的状态、复合铁磁层内部的层间耦合、不对称的磁化反转行为、锻炼效应的机制等问题。具体内容包括:通过在铁磁/反铁磁界面引入超薄Pt插层、在反铁磁层内部引入超薄Pt插层、以及在反铁磁层界面附近引入Pt掺杂,并优化插层和掺杂层的厚度和位置,使FM/FeMn(FM为铁磁层)体系的交换偏置场大幅提升,最高可达无插层时的180%左右。机理分析表明,引入的插层和掺杂层可以改变界面未补偿反铁磁磁矩的数量和状态,从而实现了对界面耦合的调控。在(Pt/Co)6/Pt(t)/Co,(Pt/Co)6/Pt(t)/Co/FeMn和Co/Pt(t)/[Co/(Pt/Co)5]/FeMn体系中观察到(Pt/Co)6周期层与一个较厚的Co单层之间穿越Pt隔层的层间耦合,发现该层间耦合随隔层厚度增加是振荡衰减的,其振荡周期和衰减长度大大超出了一般的铁磁/非磁/铁磁体系;而且,在(Pt/Co)6/Pt(t)/Co/FeMn体系中,(Pt/Co)6/Pt(t)/Co中的层间耦合可以对铁磁/反铁磁界面耦合产生调节作用,使Co/FeMn界面耦合也随Pt隔层的厚度改变而周期变化。在Co/FeMn体系中研究了沿铁磁层难轴方向(垂直膜面)诱导的交换偏置,发现FeMn层出现了大量的界面未补偿磁矩,远远超出了一般交换偏置体系的水平,体系的磁化反转行为表现出强烈的不对称性,并随着Co层厚度和FeMn层厚度的变化展现出截然不同的特征。进而讨论了交换偏置体系中影响磁化反转不对称性的关键因素,分析了不对称磁化反转行为两种内禀起源的联系。以多种扫场方式测量了NiFe/FeMn体系的各向异性磁电阻,并借此研究了交换偏置的锻炼效应的角度依赖关系,发现NiFe/FeMn体系中交换偏置的锻炼效应具有多重机制,进而提出了一种基于反铁磁畴态模型的交换偏置衰减机制,很好地解释了锻炼效应中首循环的特殊性。