【摘 要】
:
溃疡性结肠炎是一种全球性疾病,发病率历来较高。它的发生可由多方面因素引起,其中肠道菌群对免疫启动、黏膜稳定以及避免可能破坏宿主相互作用的致病行为至关重要,因此肠道菌群已成为目前炎症性肠病治疗的重要靶点。肠道菌群的定植与黏液层密切相关,而酶原颗粒蛋白16已被鉴定为黏液的成分之一。那么ZG16的缺失是否会影响肠道菌群的变化,进一步对结肠炎的患病程度产生影响?是本论文所研究的主要问题。为了解决这一问题,
论文部分内容阅读
溃疡性结肠炎是一种全球性疾病,发病率历来较高。它的发生可由多方面因素引起,其中肠道菌群对免疫启动、黏膜稳定以及避免可能破坏宿主相互作用的致病行为至关重要,因此肠道菌群已成为目前炎症性肠病治疗的重要靶点。肠道菌群的定植与黏液层密切相关,而酶原颗粒蛋白16已被鉴定为黏液的成分之一。那么ZG16的缺失是否会影响肠道菌群的变化,进一步对结肠炎的患病程度产生影响?是本论文所研究的主要问题。为了解决这一问题,本论文采用硫酸葡聚糖钠(DSS)诱导的小鼠溃疡性结肠炎实验模型,观察诱导疾病前后ZG16-/-小鼠与WT小鼠在表型、组织学水平、细胞因子水平的变化,并且收集粪便样本,采用通用16S r RNA基因(V3-V4区)高通量测序分析肠道菌群的变化。研究发现WT和ZG16-/-小鼠在不诱导结肠炎的情况下,在表型、组织学水平及相关细胞因子表达等方面均无显著差异,而肠道微生物的群落组成存在明显差异。诱导结肠炎后,ZG16缺失型小鼠相比WT型小鼠死亡率更高,体重下降、血便情况更严重,且结直肠长度显著变短,肠黏膜结构浸润严重,相关促炎细胞因子表达升高,患病程度更重。所以在溃疡性结肠炎中,ZG16基因很可能是通过改变肠道微生物来影响炎症程度的。肠道菌群分析发现,不诱导结肠炎情况下,WT和ZG16-/-小鼠肠道微生物的多样性在门、属水平上无显著性差异;但物种组成、群落结构都有差异。ZG16-/-小鼠较WT小鼠厚壁菌门丰度降低,拟杆菌门丰度增加,其中有益菌属如乳酸杆菌属、Lachnoclostridium等显著减少,有害菌属如拟杆菌科S24-7家族、普雷沃氏菌属、瘤胃球菌属、艾克曼菌属等大量增加,这些是影响其肠道稳态的重要因素。并且ZG16-/-小鼠中普雷沃氏菌属的增加与乳酸杆菌属的降低可能会诱导CCL5的产生和免疫细胞的募集,从而导致DSS诱导的结肠炎的加重。诱导结肠炎后,ZG16-/-小鼠肠道微生物在属水平上多样性显著低于野生型小鼠,进一步加剧肠道菌群失调。菌群变化还是以厚壁菌门的丰度降低为主,尤其是产丁酸菌F.prausnitzii、Eubacterium等显著减少,这类有益菌种类和丰度的继续减少进一步加剧结肠炎的患病程度。综上所述,ZG16可能通过影响小鼠肠道菌群,在溃疡性结肠炎的发病中发挥抑制性作用,该研究结果可以为人类溃疡性结肠炎的预防和治疗提供新的思路和潜在的靶点。
其他文献
机体针对外界病原进行高效的体液免疫应答,以产生具有特异性和高亲和力的中和抗体,是机体清除外界病原微生物的重要生理进程。近年来的研究发现,由CD4+T细胞分化形成的滤泡辅助性T细胞(TFH),能够辅助B细胞进行生发中心(GCB)选择,进而分化形成分泌特异性和高亲和力抗体的浆细胞,以上是T细胞介导的体液免疫应答中的关键环节,也是目前疫苗研发的分子理论基础和以自身抗体分泌增多为特征的自身免疫类疾病的潜在
人类鼻病毒(Human rhinovirus,HRV),属于小核糖核酸病毒科,肠道病毒属。HRV被分为三类,即HRV-A,HRV-B,HRV-C,其中鼻病毒2型(HRV2)属于HRV-A。HRV是诱发普通感冒的最主要病毒之一,它会导致上、下呼吸道感染,并与慢性肺部疾病的恶化有关。HRV有100多种高水平序列变异的血清型,阻碍了抗病毒疫苗的开发,迄今为止,还没有预防或治疗HRV感染的抗病毒药物。HR
随着人工智能、大数据、物联网等新技术的快速发展,第四次工业革命的浪潮正汹涌袭来。为在新的工业革命中抢占发展先机,需要大批具有跨学科视野,具备引领行业创新能力、项目实践能力及团队协作沟通能力的新型工程人才做支撑。新工科建设正是我国为培养这种新型工程人才而进行的高等工程教育改革。在新工科教育理念下学生的学习行为必将发生改变,而传统的学习空间难以为新的学习行为提供便捷有效的空间支持,因此需要研究探索适合
在中枢神经系统中,少突胶质细胞前体细胞(Oligodendrocyte precursor cells,OPCs)直接分化形成少突胶质细胞(Oligodendrocytes,OLs),随后OLs形成髓鞘并包裹轴突,最终维持中枢神经系统的功能。如果髓鞘的生成呈现异常,就会影响神经信号传导,破坏认知或运动功能,最终引起多发性硬化症等髓鞘相关神经性疾病。COPⅡ复合体是由Sarlp、Sec23p/Sec
金属团簇催化剂在非均相催化领域有着非常广泛的应用,它们的催化性能与构型结构及电子性质息息相关。对于催化反应来说,催化体系在催化过程中的变化是比较复杂的,例如小分子吸附物与金属团簇表面吸附位点间的相互作用、金属团簇自身构型的变化及带电金属团簇所带电荷对吸附物的影响等等都是需要考虑的方面。目前,由于实验技术水平的限制,尚且不能通过实验直接观察到金属团簇在催化反应中的催化行为及构型变化。基于以上问题,本
化疗作为现在癌症治疗的重要方式之一,在临床上仍然具有十分广泛的应用。然而由于许多化疗药物引起的非特异性毒性,合理设计用于癌症治疗的可控药物释放系统已经成为人们研究的热点。在本文中,我们设计了一种新型智能的光响应氧化还原裂解的药物复合载体。我们通过利用氧化还原反应性硒(Se)取代的聚合物为壳,并使用光敏卟啉锆金属有机骨架(MOF)为核心,设计了激光或光响应性药物输送纳米颗粒。该复合载体通过以下步骤制
目的分析厦门大学附属第一医院儿科血流感染患者血液微生物的特征和血流感染的影响因素,为抗感染治疗提供理论支持。方法收集359位儿科血流感染患者的病例资料,利用聚合酶链式反应技术分析45个菌株样本的耐药基因。根据3例血培养大肠埃希菌测序结果,分析致病大肠埃希菌的基因特点。收集15位脓毒症患者和12位无血流感染参与者的血液宏基因组测序结果,对血流感染的影响因素进行分析。结果388株分离菌中,革兰氏阳性菌
浮游植物是海洋食物链和生态系统的基础;其通过光合作用将无机碳合成有机碳的过程,是海洋有机物的主要来源,因而是调控海洋生物地球化学过程的关键。浮游植物吸收无机碳的途径主要包括基本不消耗细胞能量的二氧化碳(CO2)被动扩散、以及显著消耗细胞能量的碳酸氢根(HCO3-)主动运输。随着工业革命以来人类活动不断排放CO2,海水CO2浓度上升,增加了 CO2被动扩散的速率,理论上浮游植物可以减少对HCO3-的
随着我国综合国力增强以及国际形势的复杂变化,发展海洋事业的任务显得日益重要与紧迫,海洋问题成为国家发展的战略问题,这使得我国对水下无线通信的要求也越来越高。然而,当前的水声通信系统时延大、速率慢,在传输图片视频格式的信号会出现掉帧卡顿的现象,因此本文提出一种高阶多维的3d OFDM水声高速通信系统,解决当前水声通信系统中调制速率低、数据容量小并且误码率较高的问题。本文对脉冲信号调制技术,OFDM系
癌症是21世纪人类提高预期寿命最大的阻碍。据世界卫生组织的统计数据,癌症是半数以上国家居民的死亡第一或第二原因。其中食管癌位居全球恶性肿瘤发病率的第七位,死亡率第六位。我国90%的食管癌为食管鳞癌。目前其主要的治疗手段有手术、放疗及化疗。但是即使是综合疗法,5年生存率依然只有20%。食管鳞癌预后不佳的主要原因之一是化疗耐药。CRISPR/Cas技术是近年新兴的基因编辑技术,作为最先进的编辑技术,在