论文部分内容阅读
工程机械行业一直以来是国民经济的重要组成部分,产品广泛应用于各个行业。近年来随着国民经济的发展,各行业对工程机械设备的要求越来越高,随着工程机械设计水平的提高,对材料要求也越来越高,不仅需要更高的强度,还需要具有优良的韧性和良好的可焊接性。特别是对于屈服强度高于1000MPa的高强钢来说,其韧性的控制更是产品开发的难点。为了实现高强钢的强韧性匹配,本研究自主开发了一种屈服强度超过1000MPa的Q1030超高强钢。并对其在不同技术工艺条件下的相变行为进行了较系统的研究,研究了 Q1030超高强钢的CCT曲线、轧制工艺、微合金元素第二相粒子的析出行为,以及不同淬火加热温度、保温时间、回火温度及回火时间条件下Q1030超高强钢的组织和性能的变化规律,最终工艺优化后,Q1030超高强钢-20℃冲击韧性达到100J以上,并得出主要研究成果如下:对于Q1030钢的静态CCT曲线,当冷速控制在1℃/s时,金相组织开始出现贝氏体;当冷速控制在3℃/s时,铁素体基本消失,金相组织变为以贝氏体为主,当冷速逐渐升高至7℃/s时,金相组织中开始出现马氏体。而对于Q1030钢的动态CCT曲线,变形奥氏体相变开始温度和相变结束温度都有所升高,相变温度区间也有所增大。采用回归法确定了 Q1030高强钢在奥氏体区的热变形激活能,建立了该高强钢的热变形方程;采用lnθ-ε曲线的三次多项式拟合求拐点的方法,较准确地预测了 Q1030高强钢动态再结晶的临界应变和峰值应变,建立了临界应变与Z参数的关系。研究了低应变速率变形过程中Nb、Ti析出第二相粒子的析出行为,实验钢中存在的析出相为长方形的TiN,近似方形的(NbTi)(CN)碳氮化物,椭圆形的(NbTi)C碳化物和NbC,利用热力学计算可知,钢中第二相析出的先后顺序为 TiN,TiC,NbC,NbN。研究了奥氏体晶粒在不同加热温度下的长大规律,随着加热温度的逐步升高,晶粒平均尺寸呈指数关系增大,随保温时间延长晶粒平均尺寸则呈现抛物线规律增大。在880~950℃区间淬火时,随着奥氏体化温度的逐步升高,Q1030钢的硬度和强度逐渐升高,到950℃时达到最大值,其中洛氏硬度达到46HRC,屈服强度可达到1120MPa;在950~1100℃温度区间淬火时,随着奥氏体化温度的进一步升高,Q1030超高强钢的硬度和强度逐渐降低。当温度达到950℃以上时,其韧性开始明显下降。当Q1030钢以0.25℃/s较慢的加热速度升温时,Q1030钢的马氏体—奥氏体相变分两阶段进行,第一低温阶段受扩散过程控制,在高温第二阶段,相变以切变方式进行。当以10℃/s较高的加热速度升温时,整个相变过程以切变方式连续进行。当Q1030钢加热至730℃时,组织中出现针状奥氏体,加热温度达到760℃时,在马氏体板条束界和原始奥氏体晶界上有粒状奥氏体形成,加热温度达到820℃时,组织开始以粒状奥氏体为主。在400℃以下回火时,马氏体板条界仍然清晰可见,小角度晶界的频率也未发生明显的变化,屈服强度会缓慢下降,伸长率会缓慢上升,在400℃以上回火时,小角度晶界出现的频率明显降低,屈服强度会迅速下降,伸长率开始迅速上升。随着回火温度的上升,很多细小且平行析出的θ-碳化物逐渐溶解,最终被析出的Cr的碳化物替代,Nb、V和Ti的碳氮化物也逐渐析出长大,形状也由方形向椭圆形演变。