论文部分内容阅读
有限体积元方法早期被称作盒式法,通过选取线性或双线性有限元空间作为试探函数空间来离散微分方程的积分守恒形式.该方法也被称作广义差分法,由于它能保持质量和能量的局部守恒性,已被广泛应用于数值求解微分方程和流体力学中。
本质上,有限体积元方法是基于插值的数值方法,对于二次Lagrange插值而言,一阶导数一般仅具有二阶精度,但不排除在个别点上达到更高精度.如对于[-1,1]上的二次插值,使用-1,0,1三点做二次插值,则在-1/√3,1/√3这两点,插值函数导数具有3阶收敛精度.我们把这些点称为应力佳点。
本文提出了基于应力佳点的二次有限体积元方法,得到了应力佳点处的导数和节点的超收敛结果,第一章针对两点边值问题给出了二次超收敛有限体积元方法,第一节建立了基于应力佳点的超收敛有限体积元格式,第二节对格式做了H1,L2模误差估计,得到了H1范数的最优误差估计和3阶L2模误差估计。第三节从理论上说明了格式在应力佳点处的导数超收敛性,并针对简单情形证明了格式在节点处的超收敛性,第四节用具体算例说明了算法的有效性并通过比较说明了算法的优越性。
第二章把基于应力佳点的二次有限体积元方法推广到一维抛物型方程。第一节建立了基于应力佳点的二次有限体积元格式,第二节给出了L2模误差估计,最后用数值算例说明了算法的有效性。