论文部分内容阅读
时令水体通常被划分为一种湿地类型,在水体和湿地之间循环发生着相态的转换,其形成与消失、扩张与收缩,及其所引起的生态环境的变化都反映了一定地域乃至全球的气候变化规律。时令水体在生态系统中的作用不容忽视,为众多生物资源提供了栖息环境,同时也是全球水循环、碳、氮循环的组成部分,具有重要的生态学意义。东北地区地域辽阔,气候类型多样,地貌形态差异明显,在平原区域水体发达、河网密布,湖泊数量众多,发育了众多盐碱湖泊、沼泽洼地、浅水湖泊等对气候变化较为敏感的水体。在全球气候变化的大背景之下,加之人类活动的影响,湿地面积萎缩、地下水资源超采、土地荒漠化以及盐碱化等生态问题,导致东北湖区的生态环境问题日益突出,成为生态环境较为脆弱的区域之一。本文采用高时间分辨率GOCI遥感影像作为数据源,以东北地区湖泊、沼泽集中分布的平原地区作为研究区域,选择了气候、水文条件差异较为明显的特殊年份(丰水年2013年与枯水年2016年)的非结冰期(5月至10月),基于BP神经网络模型对各监测时段研究区的影像进行混合像元分解,进而分别提取了2013年与2016年非结冰期的水体组分信息,进行了高频次的水体组分变化监测,并且分别建立时间序列下的水体组分数据集,逐像元监测了水体组分值在时间序列下的变化,最终提取出在时间序列中发生相态变化的水体像元,即时令水体,同时,通过对时令水体的相态转换频次分析、像元状态的变化分析以及在监测时段内的变化规律等,从不同的角度对时令水体进行变化监测与分析,在研究过程中,主要得到以下结论:(1)基于BP神经网络的水体提取方法相比于传统的水体提取方法(波段比值法、NDWI、MNDWI、谱间关系法、单波段阈值法等)具有更高的提取精度,尤其是对于细小河渠、小型水体以及水陆边界的提取精度要明显优于传统的水体提取方法。(2)本文提出的基于混合像元分解的时令水体面积计算方法可以较为准确的计算出时令水体的面积,实现大面积的时令水体监测与面积计算,通过计算可得,研究区内2013年全年(非结冰期)的时令水体总面积达5819.5km2,2016年全年(非结冰期)的时令水体面积为4398.55km2。(3)东北地区的绝大多数的时令性水体在监测时间段内,会发生1-3次相态转换(水体出现或者水体消失),2013年研究区的时令水体像元发生1-3次相态转换的像元占所有时令水体像元的89.13%,2016年研究区的时令水体像元发生1-3次相态转换的像元占所有时令水体像元的88.41%。(4)统计在各个监测时段内发生水体相态变化(水体出现或者水体消失)的像元个数,根据统计结果,同时结合气温、降雨等气象水文数据,可发现时令水体对于气候条件的变化极为敏感,气候条件的改变会直接反映在时令水体的相态变化之上。(5)在时间序列下,考虑时令水体像元的状态(纯水体像元、混合像元、非水体像元),其中,纯水体像元或者非水体像元的比重越大的像元,在时间序列下变化最为稳定,主要分布在水体的水陆交界处;反之,混合像元的比重越大的像元,在时间序列下变化最为剧烈,主要分布在地势偏低的洼地与河网密集地带。