大规模新能源送出线路纵联保护新原理研究

来源 :华北电力大学(北京) | 被引量 : 0次 | 上传用户:wcf333
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
过去二十年,风电、光伏等新能源爆发式增长。截止2021年底,新能源总装机容量高达6.35亿千瓦,新疆、内蒙等局部地区短时间断面内新能源发电量最大占比接近50%。由于新能源电源故障等值内电势不恒定,短路电流波形畸变严重,导致基于同步机故障电流特征设计的保护动作性能下降。保护不正确动作引发新能源电源的大规模脱网,甚至威胁系统安全运行。因此,如何正确认知新能源故障电流变化特征,进而研究可靠的保护新原理是大规模新能源送出线路保护面临的关键问题。论文以新能源电源故障特性认知为基础,提出了新能源送出线路保护新原理,研制了保护样机并利用人工短路试验验证,具体创新成果如下:(1)基于换流器故障穿越控制策略切换边界,探明了不同换流器不同时间尺度的故障电流波形特征差异。证实了换流器与传统同步机之间以及不同换流器之间故障电流波形特征存在本质差异,揭示了传统纵联保护在新能源接入强电网和新能源接入弱电网场景的性能下降机理。解决了新能源故障特征难以正确认知、保护性能分析缺乏理论依据的问题,为保护新原理的研究奠定了基础。(2)提出了适应于新能源接入强电网的故障电流波形相似度保护原理。提出了基于故障电流波形特征提取的保护设计思路,突破了传统保护依赖工频幅值、相角比较的局限。提出了基于余弦相似度的故障电流波形差异提取方法,构造了计及稳定因子的实用化保护判据,提升了保护在新能源零出力场景下故障识别的精度。解决了新能源接入强电网时传统纵联保护性能下降的问题。(3)提出了适应于新能源接入弱电网的故障电流波形奇异性保护原理。利用线路双端换流器控制策略不同而导致的本征响应阶段故障电流差异,提出了基于奇异值分解的波形奇异性特征提取方法,进而构造了基于奇异性检测的启动判据和奇异值比较主判据,解决了弱电网场景下新能源送出线路传统纵联保护无法适用的问题。(4)提出了基于特征信号误差分析的波形特征保护新原理整定方法,为保护新原理的工程应用提供整定依据。基于电流波形采样值传输的通信模式,研制了新能源送出线路保护样机。提出了基于新能源模型及录波数据回放的综合测试方案,全面验证了保护新原理的动态性能,进一步通过人工短路试验证实了所提保护的有效性。解决了保护新原理数据需求与现有保护平台性能不匹配的问题。
其他文献
氧化还原液流电池(简称液流电池)是一种易于大规模部署的储能技术,适合解决风力和光伏间歇性发电的问题。在液流电池中,氧化还原活性材料(简称活性材料)蒽醌凭借其潜在成本低、“绿色”、双电子参与反应和性能可调等优点而备受关注。目前水系蒽醌液流电池可以分为酸性、碱性和中性体系,然而制约它们应用的瓶颈主要是:1、蒽醌液流电池的性能较差,不足以和全钒液流电池竞争;2、大部分蒽醌液流电池使用昂贵的Nafion
核酶是可以催化特定生物化学反应的RNA分子,在生命体中参与了RNA剪接、t RNA成熟、以及肽键的合成等重要的生物过程。核酶于上世纪八十年代初首次被发现。核酶的发现证明了RNA不仅可以像DNA一样作为遗传物质,还可以像蛋白酶一样作为生物催化剂,从而支持了“RNA世界”假说。迄今为止,已有多种核酶被鉴定或设计出来。其中一类长度小于200 nt的小型自切核酶(small self-cleaving r
加快汽车电气化转型是各国政府实现道路交通领域“碳中和”的重要举措之一。作为电动汽车的昂贵部件之一,汽车动力蓄电池(Automotive Traction Batteries,ATB)的服务寿命是有限的。大量报废的ATB含有巨大的矿产资源,若回收处理不当就会成为污染之源。循环利用报废的ATB,如先梯级利用电池以延长使用寿命,后提取稀有金属材料用于新电池的生产,可促进循环经济的发展,是实现碳减排的途径
随着国家工业技术的快速发展,我国已进入机电产品淘汰的高峰期,对这些废旧机电产品实施再制造具有巨大的社会与经济价值。由于技术理论发展时间相对较短,现阶段废旧机电产品在进行再制造处理时,缺少设计阶段产品层面的统筹规划,在零部件局部最优与产品整体最优、个体零部件尺寸恢复与产品装配精度之间存在矛盾,导致了额外的成本与质量波动。装配尺寸链作为再制造产品的最终表现形式,既能直观评价各构成零部件间的性能均衡程度
近年来,强声波助燃除尘技术在电站锅炉中得到了一定应用,并取得了良好的经济和环境效益。这表明,强声波在强化煤粉燃烧和换热器热交换过程等方面具有较大潜力。然而,该技术在燃煤电站锅炉中并未得到全面推广。究其根本原因,该技术缺乏对强声场与传热、燃烧和清灰过程之间基本物理关系和作用机理的清晰认识,如强声波作用下燃煤颗粒的运动特性、强声波对煤颗粒及换热管传热行为的影响规律及强声波与燃煤颗粒和换热器管相互作用形
近年来,由于大气污染物的大幅减排,我国空气质量显著改善,但大部分地区细颗粒物(PM2.5)浓度仍远超国家二级标准(35μg/m3)。硫酸盐(SO42-)和硝酸盐(NO3-)是PM2.5的重要组成成分,在PM2.5中占比显著提高。SO42-和NO3-前体物排放(SO2和NOx)的大幅削减与其在PM2.5组分占比的显著提高的背离现象引起了社会和学术界广泛关注,相关成因以及SO42-和NO3-生成途径的
作为实现“双碳”目标的重要技术手段之一,太阳能光伏发电技术在节能减排和引领电力行业转型方面发挥了重要作用。随着光电转换效率的提高和生产成本的下降,组件表面的灰尘污染已成为影响光伏电站发电性能的重要因素,污染严重时甚至可能损坏组件表面并缩短其使用寿命。如何减少灰尘沉积造成的光伏发电量损失和运维费用,保持光伏组件处于高效工作状态仍是目前关注的重点。因此,探究灰尘微粒沉积机理以掌握组件积尘特性,并探寻提
中国电力系统的碳排放约占全国能源相关碳排放量的一半,电力系统的脱碳对于中国实现“30·60”双碳目标至关重要。我国的能源国情和电力系统结构决定了火电的高效利用和可再生能源的高比例渗透是未来低碳能源系统的关键。作为新兴的技术组合,含碳捕集(Carbon capture system,CCS)和电转气(Power to gas,P2G)的多能系统可以在减少碳排放的同时增加可再生能源的消纳,形成碳元素链
随着大跨空间结构的发展,对于重大工程抗震设计提出了更高的要求。地震动输入是结构进行动力分析的前提,对结构进行有效的抗震设计具有重要的意义。同时由于地震动存在明显的空间变异性,地震动输入由传统的单点输入扩展为多点输入。然而仅通过现有的实测记录难以满足工程输入需求,需要进行多点非平稳地震动的人工合成。目前相关学者对此做了大量研究,其合成方法大致可划分为如下三大类型:无条件模拟、有条件模拟及其他合成方法
构建以可再生能源为主体的新型电力系统是实现我国“碳达峰”、“碳中和”目标的重要途径。随着可再生能源装机容量与发电占比的快速提升,其间歇性和波动性的出力特点导致新型电力系统对灵活性调节资源的需求剧增。混合储能技术在实现新型电力系统安全、稳定、灵活的运行中有着重要的战略意义。因此,本文以多类储能技术前景评估为基础,开展了面向新型电力系统发电侧、输配侧以及用户侧的混合储能方案优选及优化配置模型研究,探讨