论文部分内容阅读
激光技术的飞速发展使得人们可以在飞秒时间尺度范围内实现拍瓦量级的激光瞬时功率输出。可以获得的激光强度超过1022Wcm-2。,而单个脉冲宽度也可以小于10fS。等离子体介质由于没有破坏域值限制,能够承载的加速梯度比传统加速器要高几个数量级。利用强飞秒激光脉冲与等离子体相互作用可以在非常短的距离内把电子或离子加速到很高能量。而所使用的超短脉冲激光装置一般都己实现小型化,基于超短脉冲激光与等离子体相互作用的台面型激光粒子加速器的研究得到越来越多的重视。
本论文主要是从实验和理论上,并部分利用PIC粒子模拟方法,对强飞秒激光脉冲与等离子体相互作用中加速电子和离子及其应用的相关问题进行研究。
主要包括:
1.从理论上研究了强激光束在等离子体通道中的导引。由于使用非弱相对论近似微扰展开的方法,避免了考虑高阶非线性等的局限性。详细分析了相对论通道耦合效应对通道中激光传输特性的影响,并推导了新的匹配传输条件。在使用顶等离子体通道导引激光的激光尾波场加速实验中,指向抖动将导致主激光束偏离通道中心轴入射,使主激光与通道之间的准直性变差,从而影响激光的导引效果和电子的加速效率。提出了考虑光束指向抖动影响的离轴入射模型,并导出了通道中各相应光束参量的演化方程。根据所提出的表示光束指向抖动影响大小的参数和通道的有效范围,可以得知存在光束指向抖动时通道等对主激光的导引的有效性。
2.搭建了利用烧蚀型毛细管放电产生等离子体通道的实验平台,系统研究了可以稳定重复产生等离子体通道的参数条件,利用光谱方法对通道结构进行了时间和空间分辨的测量,并演示了产生适用于10GcV量级激光尾波场电子加速的低密度等离子体通道。提出了激光横向触发毛细管放电的方法。该横向触发放电方法可以克服原有激光纵向触发放电方法的局限性,并适用于采削毛细管放电等离子体通道导引激光的级联加速方案。
3.基于上海光机所强场激光物理国家重点实验室自建的拍瓦激光装置,搭建了利用烧蚀型毛细管放电产生等离子体通道导引激光的激光尾波场电子加速实验平台。并进行了系列的超强超短激光脉冲的导引实验和电子加速实验。实验上演示了入射功率为160TW的超强飞秒激光脉冲在4cm长等离子体通道中的导引。通过改变毛细管材料,从实验上验证了高阶光电离注入在含氧的烧蚀型毛细管电子加速实验中的重要性,并得到了最大能量大于1GcV的电子加速实验结果。提出了前端毛细管使用含氧材料、后端毛细管使用不含氧材料组合的方式来演示激光级联电子加速的实验方案,在实验中得到了具有准单能特征的信号。
4.在双层靶试探粒子加速模型中,一般假设背景离子是均匀分布。但所使用的激光脉冲长度等条件不同时,会对背景离子的密度分布造成影响。对激光脉冲长度与背景离子密度分布之间的关系做了定性分析,从理论上研究了背景离子密度梯度分布对轻离子加速的影响。
5.重离子束在肿瘤治疗方面具有一系列的优点,但传统加速器的高昂造价使得该方法难于推广;目前临床使用的光动力疗法的治疗效果也由于光源和肿瘤区域氧含量等受到限制。激光离子加速器被认为可以降低加速器的成本,但短时间内难以同时达到肿瘤治疗对离子束能量和数目的要求。大剂量的离子束也不适合直接用于危险组织的肿瘤治疗。提出了利用激光加速氧离子进行放射治疗并驱动光动力疗法的肿瘤综合治疗方案,可以在一定程度上克服两种方法单独使用时的局限性,从而加快重离子束放射治疗的推广。利用一维PIC模拟程序,在氧化物薄模靶中模拟了激光准单能氧离子加速,初步验证了该方案的可行性。