基于特征融合与深度神经网络的心电图分类方法研究

来源 :齐鲁工业大学 | 被引量 : 0次 | 上传用户:wuyan123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目前,心血管疾病已经成为危害人类健康的重大疾病,此类病患数量不断增长。心电图(ECG)是医生诊断该心血管疾病的重要依据,能真实地反映心脏的健康状况。此背景下,医疗资源匮乏与患者数量激增之间的矛盾日益凸显。利用计算机辅助诊断心血管疾病变得尤为重要,因此对于心电图自动分类方法的研究具有很强的现实意义。
  传统方法大多基于单一心拍的分类,忽略了整条心电图记录中,各心拍之间的局部特征和位置关联特征;现有分类方法使用简单的神经网络来提取信号特征,不能准确获取心电信号的多尺度特征,导致模型分类效果不佳。本文基于特征融合与深度神经网络提出了一种心电图自动分类算法,主要研究工作分为以下几个部分:
  (1)针对心电信号中存在的噪音干扰,本文利用小波变换(WT)对心电信号进行分解重构,滤除其中的噪音干扰,从而得到更为稳定的心电信号。本文提出了一种基于深度卷积神经网络(DCNN)的心电图分类方法,该方法利用其局部感知与权重共享的特点,通过增加网络深度来提取心电信号的深度抽象特征,继而拟合出一个高度复杂的非线性决策函数对心电信号进行分类。同时,该方法使用RAdam来优化梯度,并通过多次实验调整卷积网络的结构和参数,以提高模型的分类准确率。
  (2)在小波变换的基础上,本文增设中值滤波来规避基线漂移对心电信号造成的干扰。针对心电信号具有时序性的特点,本文在卷积神经网络的基础上添加BiLSTM网络,利用BiLSTM网络来深度挖掘心电信号间的强关联性,该方法能够更好的将卷积神经网络与循环神经网络(RNN)的优势相结合,并提高了心电图四分类任务的准确率。
  (3)本文提出使用多输入组合模型来提取心电信号的多尺度特征,利用特征融合来提高模型的分类精度。本文设计了一个带有三个不同残差单元的残差网络,通过残差网络特有的快捷链接来增加网络深度,进一步挖掘心电信号的深层次特征。多输入组合模型分别利用卷积神经网络、循环神经网络与改进的残差网络来提取不同尺度的心电信号特征,将提取到的不同心电信号特征进行融合后送入分类器中进行分类。并将该方法在2017PhysioNet/(CinC)Challenge提供的数据集上进行了验证,在心电图四分类任务中F1-score达到0.89,相比其他模型分类性能明显提升。
其他文献
蛋白质二级结构预测在生物信息学领域具有重大意义,对充分了解蛋白质的功能和结构是十分必要的,科学家们从未停止对蛋白质结构的研究。本文主要使用了深度学习模型来进一步提高蛋白质二级结构的预测准确率,本文的主要工作包括以下几个方面:(1)基于优化的卷积神经网络的方法。首先本文对蛋白质数据进行处理,将CASP11数据集作为验证集,并建立初始的卷积神经网络模型,然后将卷积神经网络的层数、学习率、梯度冲量和正则
学位
多输入多输出(Mutiple-Input Mutiple-output,MIMO)通过其空间复用和分集能力可有效提升无线通信系统的吞吐量和可靠性,是新一代移动通信系统中的关键技术之一。预编码通过在发射端对发送信号进行预处理,可有效抑制数据流间干扰,从而提升系统容量和资源利用率,因而是MIMO系统性能得以实现的重要技术手段。传统预编码技术一般通过统计分析和高级信号处理技术设计固定的算法,对环境的动态
近年来,物联网、人工智能以及区块链等技术的快速发展使得人们生活质量更加优越,人们对物联网设备(智慧手环、智能音箱和手机等)需求量不断增加。然而,大多物联网设备被制造时都存在缺少防火墙软件和密钥口令较弱等安全问题。攻击者可以利用这些存在安全隐患的物联网设备对物联网中的其他物联网设备发动分布式拒绝服务攻击(Distributed Denial of Service,DDoS)消耗被攻击者系统资源或网络
蛋白质是生命活动的主要承担者,充分了解其结构和相互作用对于疾病的治疗及新型耐抗性药物的研发具有重要意义。然而已知蛋白质的数量增速极快,通过直接观测的方式确定其三维结构面临着成本过高,速度过慢的问题,因此如何成功预测蛋白质三级结构成为了热门研究方向。本研究创新性运用生成对抗网络(GAN)和双向长短时记忆循环网络(BiLSTM)技术对蛋白质二级结构进行预测,有效发挥了承上启下的关键任务,为解决直接利用
学位
制造业是我国的支柱产业,随着中国制造2025的提出,数字化、网络化、智能化是我国制造业未来发展的基本方针。但随着制造业的快速发展,其设备参数关系复杂、关系相互制约、不易管理人员分析等问题也随之出现,而设备参数的设定又是决定产品质量的重要因素之一,因此参数优化是整个制造过程优化中重要的一部分。而复杂的数据关系可以利用知识图谱来进行梳理,可以让管理人员更加容易的理清其中的关系,因此如何利用知识图谱对参
学位
随着大数据时代的到来,与其关系紧密的人工智能技术得到了跳跃式的发展,文本信息的数量不仅展现出跳跃式的增长趋势,还逐渐显现出多标签、多粒度,高复杂性的特点。为了对文本信息进行更为效率的分类管理,实现文本内容的有效保留和准确过滤,研究者们近年来开始关注于自然语言处理领域中最具有普适性的多标签分类技术。基于深度学习的多标签分类方法能够自动地为文本序列中具有显著意义的信息赋予标签,进而实现对文本数据的高效
学位
随着计算机和多媒体技术的高速发展,网络信息化已然成为社会和经济发展的重要趋势。政府、军事、文教等诸多领域的海量信息都在网络空间中存储、传输和处理。开放的网络环境难以避免的吸引了来自世界各地的各类网络攻击(例如信息截取、信息窃听、数据篡改、数据伪造等)。为了保障网络数据传输的安全性,研究者提出了可逆信息隐藏(Reversible Data Hiding,RDH)算法,发送者通过该算法将秘密信息以肉眼
学位
抑郁症是一种常见且高发的精神障碍疾病,现有的评定过程复杂且相对主观,其有效诊断问题亟待解决。面部活动是人情绪变化的主要外在表现,通过面部特征可以研究抑郁症患者的心理活动和精神状态。抑郁症患者长期受疾病的影响,肢体动作方面临床表现为动作迟缓、身体协调能力下降、反应滞后等特点。本文主要基于面部特征、肢体动作和多模态抑郁症识别展开研究,主要工作为:(1)基于面部特征抑郁症识别。面部特征数据采集自受试者汉
学位
随着大数据时代的来临,越来越多的数据需要被存储和处理,这不仅需要海量的存储设备,还需要计算机拥有强大的数据处理能力,从而高效地完成数据处理任务。在这样的时代背景下,深度学习应运而生,并迅速应用到制造、医学,交通、金融等各个领域。深度学习技术的快速发展以及大规模带标注图像数据集的广泛使用,使得计算机视觉技术在图像处理方面有非常大的突破,尤其是在目标检测领域。计算机视觉中的目标检测任务主要包括两大部分
学位
我们在现实生活中面临的大多数决策和规划问题常常受多个因素影响,这些因素之间有可能相互冲突,但又需要通盘考虑,这就类似于对一个多目标优化问题求解。目前,智能优化算法在解决多目标优化问题方面取得了很大的进展,但仍然存在很多一些不足。例如,多目标优化算法面对一些复杂问题时,会出现过早收敛和解分布不均的情况,对于不同的多目标问题,解决效果常常参差不齐。本文在对多目标优化问题做了大量深入研究的基础上,对多目