【摘 要】
:
传统的真空电子器件普遍采用热阴极作为电子发射材料,但是热阴极本身也存在一些不可忽视的缺点,而以碳纳米管作为冷阴极发射材料具有可室温工作、启动快、发射电流密度大、可直接产生调制电流等优点。因此将碳纳米管应用到行波管中以实现器件的小型化、快启动具有极大的研究价值和应用前景。目前基于碳纳米管冷阴极行波管的主要工作仍集中于对电子枪的电子光学设计研究或一些直流下的整管仿真计算,将实际冷阴极电子枪的发射情况应
论文部分内容阅读
传统的真空电子器件普遍采用热阴极作为电子发射材料,但是热阴极本身也存在一些不可忽视的缺点,而以碳纳米管作为冷阴极发射材料具有可室温工作、启动快、发射电流密度大、可直接产生调制电流等优点。因此将碳纳米管应用到行波管中以实现器件的小型化、快启动具有极大的研究价值和应用前景。目前基于碳纳米管冷阴极行波管的主要工作仍集中于对电子枪的电子光学设计研究或一些直流下的整管仿真计算,将实际冷阴极电子枪的发射情况应用到行波管里进行的研究还不够充分,目前也未有实用化的碳纳米管冷阴极行波管器件的报道。本文结合课题组前期的工作,开展了对碳纳米管冷阴极行波管的仿真研究,主要的内容为:1.根据实际中使用的碳纳米管冷阴极电子枪的发射电流特点对18.2GHz行波管注波互作用结构的关键部件进行了电子光学的设计和优化。慢波结构采用T形夹持杆加持的螺旋线慢波结构,输能结构采用同轴型,并通过采取对慢波系统切断和设置集中衰减器的方法来抑制行波管的自激振荡。利用CST软件分别对各个部件的结构参数进行了优化,并在所确定各关键部件的基础上对整个注波互作用系统的传输特性进行仿真和优化。最后得到在中心频点18.2GHz下,互作用结构的驻波系数最优为1.55,基本符合设计需要。2.整管的仿真研究。确定注波互作用的主要参量,即工作电压和聚焦磁场。之后通过CST的粒子工作室建立了包括电子发射面、输入输出结构、螺旋线慢波结构等结构的整管模型,进行PIC仿真计算,结果表明,在输入频率为18.2GHz的情况下,输出信号幅值放大了17dB且输出信号频谱比较纯净。3.预调制电子枪的电子光学设计研究。在场发射理论的基础上,利用工作于TM010模式下的重入式谐振腔结构可以产生较强纵向电场的特点设计了预调制电子枪,并利用电场耦合的方式对谐振腔进行激励。之后经过优化,得到阴极表面电场强度的幅值最大为6×105V/m。在此基础上,利用CST软件对碳纳米管冷阴极预调制电子枪的发射情况进行PIC模拟,在静电场强度分别为5V∕μm、6V∕μm和7V∕μm的情况下,分别得到了平均电流为2.2×10-3A、2.4×10-3A、2.5×10-3A的调制电流。同时研究了输入信号频率变化对预调制电子枪调制深度的影响,当频率偏离谐振频点后,调制深度迅速下降。最后将使用调制电流和使用直流的互作用结果进行对比,结果发现使用调制电流的输出功率是未使用调制电流的1.4倍。
其他文献
近年来毫米波通信及雷达技术获得了迅速的发展。为了满足社会各行业及个体日益增长的信息交互需求,科研工作者们也在寻求着更加迅捷、高效的数据传输方案。太赫兹具备着丰富的频谱资源,太赫兹雷达也具有波长短,分辨率高等优势,因此一直以来都是被研究和开发的重点。随着器件技术的进步,亚毫米波及太赫兹收发信机具有了更高的可实现性,正在朝着高效率、高可靠性的方向发展。可实现的高功率频率源是收发系统中射频及本振链路的关
自从20世纪50年代,日盲紫外波段被发现以来,紫外探测技术的发展十分迅猛,且已经被广泛运用于军事和民用的各个方面。近年来,宽禁带半导体材料在紫外探测领域的优势逐渐凸显。目前一种新型碳点材料正投入研究,为了增强其在日盲紫外波段的光响应特性,本课题旨在通过表面等离激元效应的增强作用提升碳点的光响应能力,从而达到改善器件性能的作用。该方面的研究对于寻求具有优异性能的日盲紫外探测器具有重要的研究和参考意义
量子点发光二极管(QLED)采用量子点材料作为发光层,应用到有机或聚合物电致发光器件中,是一种新型的电致发光器件。同时,较有机发光二极管(OLED)相比,QLED具备制备工艺简单、色纯度高、稳定性好、波长可调等优点,被认为是新一代发光二极管器件。QLED器件结构中通常采用有机无机层混合形式,其发光性能十分优异,亮度超过105 cd/m2,外量子效率(EQE)超过20%。然而,此类QLED器件中空穴
电子在半导体沟道内的输运难免产生碰撞和散射,限制了迁移速度、带来了能量耗散,是需要利用新概念和新工艺解决的瓶颈问题。通过制备特征尺寸小于电子在大气中平均自由程的真空态纳米间隙结构,电子在没有真空封装的条件下也能实现弹道输运,有效地提高了集成电路器件的工作频率、降低了功率损耗。对于这种新型的器件形式,在器件设计、电流调制机制和电路应用等方面需要大量的研究工作。本论文基于平面型背栅纳米间隙结构,对真空
微波光子滤波器是微波光子信号处理系统的重要器件之一,在通信领域有着广泛的应用。目前已报道了很多基于光纤分立器件的微波光子滤波器,但由于具有体积大、调谐速率慢等缺点,限制了它们的应用。近年来,集成微波光子滤波器引起了人们的关注,但其抑制比等性能仍有待于提高,而且同时能够实现带宽和频率调谐的研究较少。本文分别通过相位调制和强度调制的方法,理论和实验研究了基于可调谐微环谐振腔的微波光子带通滤波器,提出的
近些年,信息产业发展迅速,这使得光调制器的研究向高速、大带宽、低损耗、尺寸紧凑的方向发展。PLZT电光薄膜是一种电光系数高、折射率大的压电陶瓷材料,具有设计和制备紧凑型高速电光调制器的潜力。本文使用PLZT电光薄膜结合硅波导和石墨烯电极,研究基于PLZT的新型波导电光调制型器件,重点进行器件的理论研究、性能分析、实验制备。传统微加工工艺中的刻蚀会对PLZT波导带来较大的损耗,制备的PLZT电光调制
表面等离激元由于其突破衍射极限及局域场增强等独特性质,已经在诸多领域展现出巨大的应用前景。然而,传统的等离激元器件由于结构固定或调节方式有局限,难以满足如今对光场精确、动态控制的要求。因此非常有必要研究等离激元光场的产生与动态调控的全新技术。电润湿技术是一种通过施加电压改变导电液体与固体间润湿性的技术。这种以液体为介质的调控方式可以有效缩短调节时间,提高调节效率,增强灵活性,同时调节过程可逆,稳定
随着智能化电子产品的更新迭代,微型化、高集成化及多维化已经成为电子封装行业的发展趋势。导电浆料在各种芯片及元器件组装和封装上应用广泛,不可替代。然而传统的导电银浆价格昂贵,且易发生电迁移现象,以致封装元器件的失效。铜粉价格低廉,导电性能较好,因此研究一款具有良好固化性能的铜基导电浆料,同时能满足喷印工艺需求,实现多维化封装,显得尤为重要。本文以铜粉为导电相,低熔点合金Sn-3Ag-0.5Cu粉作为
基于光学单边带的光矢量网络分析法因测试精度高,可以广泛用于光器件的振幅及延时响应测试,目前已实现了对许多光纤器件的高精度测量,但该技术对集成光子芯片的测试鲜有报道,尤其是较大的芯片插损、光源波长漂移、系统信噪比等因素都将影响芯片级的光矢量网络分析测试结果,产生较大的测试误差甚至错误,因此研究芯片级的光矢量网络分析技术非常重要。本文首先构建了光矢网延时测试模型,搭建了相应的测试系统,并基于Lab V
随着集成电路芯片向大功率、高集成度方向发展,传统电子封装材料的散热性能已不能满足当前需求。金刚石/铜复合材料具有高导热、低膨胀特性,成为新一代电子封装材料研究的热点,但因金刚石和铜不润湿,导致两相界面结合弱,无法得到理想的高导热复合材料。本课题采用放电等离子烧结(SPS)和气压浸渗工艺,结合金刚石表面金属化和铜基体合金化方式引入碳化物界面层改善界面结合,提高复合材料的导热性能。主要研究结果如下:采