【摘 要】
:
铜、铝金属易氧化,而表面的氧化会阻碍层间冷轧复合,需要较大的轧制压下率才能得到良好结合效果的复合材料。有文献报道,二次轧制可以得到综合性能较好的复合板,同时减小对轧制力的要求。因此,对二次轧制制备铜/铝复合材料的研究具有重要的理论意义和应用前景。本文以二次轧制法制备铜/铝复合材料为研究对象,探讨不同轧制工艺、退火热处理工序对铜/铝金属轧制复合的影响,对比一次轧制与二次轧制铜/铝复合板粘合结果,归纳
论文部分内容阅读
铜、铝金属易氧化,而表面的氧化会阻碍层间冷轧复合,需要较大的轧制压下率才能得到良好结合效果的复合材料。有文献报道,二次轧制可以得到综合性能较好的复合板,同时减小对轧制力的要求。因此,对二次轧制制备铜/铝复合材料的研究具有重要的理论意义和应用前景。本文以二次轧制法制备铜/铝复合材料为研究对象,探讨不同轧制工艺、退火热处理工序对铜/铝金属轧制复合的影响,对比一次轧制与二次轧制铜/铝复合板粘合结果,归纳了轧制过程中复合板变形规律、铜层和铝层的厚度变化规律,分析了不同二次轧制工艺对界面形貌、界面结合质量的影响,并采用有限元软件模拟验证了实验结果的准确性。主要研究内容如下:(1)针对二次轧制复合有限元模型层间参数难以确定的问题,以经验公式初步确定层间参数,再用调试法建立层间内聚力单元模型,随后展开剥离模拟,通过模拟结果与实际剥离结果的对比,确定了首道次50%、60%压下率的层间力学参数。(2)通过对轧制的样品的宏观对比、界面显微观察和剥离实验,分析了不同轧制道次的铜/铝复合板临界粘合压下率及其接触界面粘接机理;同时对影响二道次轧制界面粘合的主要因素进行研究,并建立有限元模型确定了临界粘合的判别条件。(3)针对轧制过程中铜、铝的变形行为差异,通过实验样品分析和有限元模拟,分析了不同二次轧制工艺铜/铝复合板的变形规律;并通过界面观察和剥离测试研究了二次轧制后铜/铝复合板的结合性能变化规律。
其他文献
随着经济和技术的快速发展,人们从未停下探索海洋的脚步。超级奥氏体不锈钢具有优异的耐腐蚀性能和良好的力学性能,在海洋资源开发中受到了广泛应用,其中,在一些海洋装备的运动系统中服役时,如船舶的动力装置、海水液压传动装置和水下作业机器臂等,腐蚀与磨损是不可避免的。因此,研究材料在海洋环境中的腐蚀磨损行为至关重要。本文以两种超级奥氏体不锈钢为研究对象,高Mn含量并加入Ce元素的标记为654-1,低Mn含量
铁素体马氏体钢在强辐照环境下具有优异的几何稳定性,耐腐蚀性能以及抗辐照肿胀等特性,可以作为核反应堆的重要候选材料之一。铁素体马氏体钢中含有的主要元素为Fe和Cr,还有少量的Si、C、N等元素。同时FeCr合金又是重要的不锈钢材料,其应用不仅局限于核电站的建设,更是涉及到日常生活的方方面面。FeCr合金通常具有成分无序性,以及复杂的磁性结构,并且材料性能与腐蚀性的研究还主要依赖于实验方法,这使得其研
在众多表面处理工艺中,喷丸表面处理技术非常成熟,可以使金属表面物理性能得到提高。从力学性质来看,金属得到强化的原因是金属产生了残余应力。从微观角度来看,主要是晶粒尺寸、位错、相变和晶胞等变化使得金属强化。本文主要是对喷丸处理中各种因素对残余应力和晶粒尺寸的影响,以及残余应力与晶粒尺寸的关系进行研究。主要工作如下:为了研究喷丸表面处理强化的内在物理机制,建立了弹丸冲击力学模型。使用DYNA软件进行研
近年来电子工业的发展十分迅速,各类电子电器产品朝着轻、薄、小、快方向发展,也因此对压延铜箔的性能提出了更高的要求。普通多晶铜箔在导电、散热和信号传输等性能上越来越达不到锂电池和微型电子等行业要求。而单晶铜的塑性、导电性和耐弯折性等多项性能优异,为了研制高质量高性能的压延铜箔,非常有必要研究单晶铜轧制工艺。本文基于热型连铸单晶铜和普通多晶铜,利用拉伸、显微硬度和金相实验研究了单晶铜和多晶铜轧制、回复
双相不锈钢的显微组织由奥氏体相和铁素体相组成,它兼具各自单相不锈钢的优点,有着优异的力学和化学性能,被广泛应用于工况恶劣的腐蚀环境中。然而,由于奥氏体相和铁素体相的晶体结构不同,在热加工时的变形机制、软化方式、变形抗力和塑性均存在差异,容易导致组织变形不协调,热加工性能较差,加工窗口相对较窄。工艺选择不当很容易产生缺陷,严重的会导致热轧边裂和热锻表面开裂。这些缺点阻碍了双相不锈钢的应用和发展。系统
形状记忆合金是近几十年发展起来的一种新型的智能材料,根据材料的不同主要分为三类,NiTi形状记忆合金最早的被发现并广泛应用于军事医疗等领域,而对于记忆合金的应用大多停留在通过对其本身的记忆特性的利用而实现简单的变形。手性超材料可在单向加载下实现多个维度上的变形,本文通过将记忆合金的记忆特性和手性超材料的变形特性相结合,组装一种智能可控的的变形结构。综合国内外学者的研究成果,研究不同手性胞元结构的变
我国国防、航空航天、船舶、电力等领域亟需大型高性能模锻件,然而,大型模锻件组织性能不均和材料利用率低的问题异常严峻,特别是截面形状呈“H”形的框类和壁板类模锻件,其材料利用率不足30%。大型模锻件的微观组织不均匀问题,表面上是变形温度场不均造成的,其本质原因在于锻件成形成性全流程形变储能调控不当,导致的微观组织不可控演变。因此本文采用低温小变形工艺,调控铝合金模锻件整体组织均匀性,并分析低温小变形
激光焊凭借其焊接热输入量小、深宽比大、焊缝强度高等优点被广泛应用于钛合金结构件焊接,但激光焊接的焊道凝固快,有时会产生气孔缺陷。尽管焊接标准对气孔大小、数量进行了严格限制,但气孔缺陷极易导致焊接板的提前失效。为此,本文以TA2纯钛中厚板激光焊接接头为研究对象,研究了纯钛板焊接接头不同区域的微观组织、拉伸、断裂等力学性能的差异,在传统断裂判据的基础上,引入SINTAP-FAD失效评定法,对含有气孔的
新型Sm-Mg-Ni系贮氢合金因为具有较大的贮氢容量、吸放氢循环稳定性和较高的吸氢平台而得到了众多研究人员的广泛关注,但是目前对于高压型Sm-Mg-Ni系合金的研究进展报道少之又少,提高贮氢合金的吸/放氢循环稳定性不仅有利于合金贮氢性能的提升,也会显著改善贮氢材料的应用范围,从而推动贮氢材料快速走向实际生产和应用。本文通过粉末烧结法制备了AB3和A2B7型Sm-Mg-Ni基贮氢合金,系统研究了两种
作为一种典型的大塑性变形(Severe Plastic Deformation,SPD)工艺方法,高压扭转(High Pressure Torsion,HPT)被应用于多种金属材料的塑性加工过程中,是能够获得细晶组织金属材料的一种典型的塑性加工方法。通过高压扭转提升金属材料的综合力学性能是目前研究的主要方向之一。本文研究的目的是提出一种通过高压扭转制备细晶2A12铝合金的工艺方法,通过选择不同变形