【摘 要】
:
Nonaqueous Li-O2 battery has been considered as a candidate power source for electrical vehicles due to its extremely high theoretical energy density that is comparable to gasoline.The main factors re
【机 构】
:
Division of energy storage,Dalian National Laboratory for Clean Energy,Dalian Institute of Chemical
论文部分内容阅读
Nonaqueous Li-O2 battery has been considered as a candidate power source for electrical vehicles due to its extremely high theoretical energy density that is comparable to gasoline.The main factors restraining the application of nonaqueous Li-O2 battery are the stability of electrolyte and the design of oxygen cathode.Conventional electrolyte,such as carbonate-based or ether-based electrolyte,is easily decomposed in the highly oxidizing environment,and cannot efficiently support the operation of Li-O2 battery.Recently,dimethylsulfoxide (DMSO) was proved to be compatible with discharge product-Li2O2 by P.G.Bruce et al.[1],though some indications of side reaction were observed when operating with carbon electrode.
其他文献
最近几年,可充放电的锂-空气二次电池因具有很高的比容量(其理论比容量最大可达3828mAh/g)和能量密度(800-1000 W·h/kg,与汽油相当),而且其正极的反应物为空气中的氧气,对空气没有污染,因此受到了高度关注,特别是非水有机电解液体系的二次锂空气电池1-2.有机电解液体系的锂空气电池通常由空气电极、有机电解液及锂负极组成,普遍认为空气电极反应实际上是一个氧气还原/氧气析出(ORR/O
Lithium-sulfur battery has drawn attention in electric vehicle applications and other fields because ofits very high energy density[1].The improvement in electrical conductivity of sulfur electrode an
Rechargeable lithium-air batteries have aroused much attention for their high energy density,and have been considered as an alternative energy system for electric vehicles.However.most reported lithiu
Lithium-sulphur (Li-S) battery,with the high theoretical capacity density (~1675 mAh g-1) and energy density (~2600 Wh kg-1) as well as the easy access and non-toxic of raw materials,demonstrates a pr
超级电容器,亦称电化学电容器或双电层电容器,由于其具有工作温度范围宽,环境友好无污染,功率密度高,充放电速率快,充放电机理简单,循环寿命长等优点而被认为是便携式电子消费品和新型混合动力汽车巿场最具前景的清洁能源.近年来超级电容器的研究主要集中在开发具有高能量密度及功率密度,循环稳定,价格低廉的电极材料上.
超级电容器弥补了传统电容器与二次电池之间的空缺.研发优异性能的超级电容器对世界能源持续性发展等问题起着至关重要的作用,而超级电容器性能的重要决定因素之一则是电极材料.制备良好的电极材料已成为当下研究热点.现在常用的超级电容器电极材料有碳材料、金属氧化物材料和导电聚合物材料.
因具有大的电流充放电性能、长的使用寿命、优异的温度特性、高的功率密度和能量密度等特性,超级电容器作为一种新型储能装置受到了广泛的研究和重视.电极材料是影响超级电容器性能的关键因素之一,因此制备高性能的电极材料是开展超级电容器研究的重中之重,主要的工作集中在碳材料、过渡金属氧化物材料、导电聚合物和复合材料研究方面.
氧化锰作为一种重要的过渡金属氧化物,在催化、离子交换、生物传感器、锂离子电池和电化学超级电容器等领域受到了广泛的关注[1].研究表明,氧化锰材料的电容性质不仅与其形貌和晶相有关,而且与其比表面积及孔径分布密切相关[2].大比表面积氧化锰纳米电极材料可以提供更多的氧化还原反应活性位点,有利于电解液离子的扩散及赝电容反应进行,从而提高电容性能.
超级电容器作为一种新型的电能存储器件,相比于传统的平行板电容器具有更高的能量密度,相比于锂离子电池具有更高的功率密度和更长的寿命.本文采用金属离子交换树脂作为前驱体,低温制备三维多级孔石墨烯(3D HPG),该三维多级孔石墨烯是一种有效的导电网络状材料.再用电沉积法在3D HPG上沉积MnO2纳米颗粒,制备出MnO2/3D PHG复合材料.
A flower-like MnO2 was synthesized by direct growth on carbon fiber paper (CFP) through a facile electrodeposition method.Compared with conventional paste coating method,this method is possible to dep