【摘 要】
:
分子通过弱相互作用能够组装成纳米级电路,因而,研究电子在分子之间的传输性质具有重要的科学意义.本论文以扫描隧道显微镜为表征手段,通过隧穿电流-位移(I(s))测量方法
【机 构】
:
中国科学院化学研究所,中国科学院分子纳米结构与纳米技术重点实验室,北京分子科学国家实验室,北京 100190
论文部分内容阅读
分子通过弱相互作用能够组装成纳米级电路,因而,研究电子在分子之间的传输性质具有重要的科学意义.本论文以扫描隧道显微镜为表征手段,通过隧穿电流-位移(I(s))测量方法研究了 1,4-苯基二硫醇(BDT)二聚体分子结的电子传输性质.两个 BDT 分子之间依靠双硫键相连,测量得到二聚体电导为 6.14×10-6G0,这比 BDT 单体的电导小了近两个数量级.在对照试验中,加入阻碍双硫键形成的磷酸三(2-氯乙基)酯(TCEP),分子结形成的几率大大降低.理论计算结果表明,二聚体中两个 BDT 分子苯环平面的角度接近 90°,这种非共轭的结构局域了二聚体电子云的分布,使得双硫键二聚体的导电性能大大降低.
其他文献
根据人体衰老与疾病发生的自由基理论,人体衰老和疾病发生是一个氧化自由基不断损伤核酸、蛋白质、细胞、肌体组织的过程,也是一个氧化产物不断积累的过程;生物抗氧化剂能够
本文应用第一性密度泛函理论对水分子单体在纯CeO2(111)表面和CeO2(111)表面搭载的过渡金属体系上的吸附行为进行了系统的研究。我们发现水分子在纯CeO2(111)表面上主要
染敏太阳能电池作为目前使用的的固体太阳能电池的一种廉价的替代方案,正受到广泛的关注.染敏太阳能电池中,染料分子一般通过COOH基团连接在TiO2上,而在TiO2anatase(101)面
针对生命科学领域中对细胞分析的迫切要求,同时为了解决常规细胞分析方法中遇到的一些问题,在我们已有的研究基础上[1,3],利用微流控芯片通道功能,成功地建立了微流控芯
肿瘤一直以来都是困扰人类的一个健康难题。随着其发生机制的明了以及分子生物学技术的发展,肿瘤的早期诊断和个体化治疗已经成为肿瘤预防和治疗的一个趋势。而无论是对肿瘤进
利用原子或者分子去构建微型化的单电子元件是一种构建分子器件的理想途径。构建这种新奇的分子器件需要着能够实现对单个分子的可控操纵,包括横向运动,转动以及实现分子构
卟啉的金属化在真空条件下金属基底上可以直接实现,但是金属原子进入卟啉分子的四吡咯大环内的反应路径还不明确。我们使用两种不同的方法,将金属原子引入卟啉分子内。通过
石墨烯与六方氮化硼的面内杂化结构(h-BNC)作为一种新型的、可调带隙的,并且表现出新奇物理化学特性的新颖二维单原子层材料受到人们的广泛关注。[1-4]我们首次在Ir(111)
随着国民经济的日益发展,人们对纳米材料的性能提出了更高的要求,具有多功能性的磁性纳米复合材料便应运而生。近年来,人们通过对材料性能的设计,开发了多种新型的磁性纳米复合材料,其中具有核壳结构的磁性纳米复合材料是较为突出的一类。本文以水滑石类化合物(LDHs)为壳层,以具有强磁性的四氧化三铁(Fe304)为核,通过一步共沉淀法制备出了具有典型核壳结构的磁性纳米复合材料。通过对磁性复合材料的结构和性能研
烯烃加氢反应在石油炼制工业具有很重要的意义[1]。在以前研究中,我们利用功能性的末端吡啶氮原子与金属钯形成配位键,在固体基片上构筑吡啶氮基和金属钯层层自组装的多层