【摘 要】
:
Redox-active self-assembled monolayers(SAMs) on gold are traditional molecular systems for the study of long-range electron transfer process at electrolyte/electrode interfaces,particularly the distan
【机 构】
:
Key Laboratory of Advanced Transducers and Intelligent Systems(Ministry of Education),College of Phy
论文部分内容阅读
Redox-active self-assembled monolayers(SAMs) on gold are traditional molecular systems for the study of long-range electron transfer process at electrolyte/electrode interfaces,particularly the distance and reorganization dependences.Ferrocene-terminated monolayers(Fc-SAMs) have been extensively studied in the past two decades because of their easy preparation,good reproducibility,and well-defined electrochemistry.The redox behavior of Fc-SAMs is in fact typically non-ideal and influenced by the microenvironment,e.g.,double layer and ion-pairing effects that are associated with both monolayer structure and the electrolyte.In this work,we first examined the redox behavior of single component 11-ferrocenyl-1-undecanethiolate SAMs on gold(FcC11S-Au),and discovered that the two distinct pairs of redox peaks are corresponding to rather moderate differences in the packing densities of the two structural domains.On the basis of the Frumkin isotherm,we have fitted the intermolecular interaction parameters in the two different structural domains of the monolayers,which can be individually modulated by either changing the composition of the monolayer or adding organic solvents to the aqueous electrolyte.With the above "new insights" in the intermolecular interactions in Fc-SAMs,we went ahead to compare "ideally behaved" redox-active self-assembled monolayers on gold prepared from post-assembly exchange and co-adsorption processes,respectively.The different distributions of the redox centers in the binary SAMs,as indicated by the distinct formal potentials and intermolecular repulsions,were explained in terms of their kinetically vs.thermodynamically controlled formation processes.
其他文献
In photoelectrochemical(PEC)cells,there exists a competition between transport of electrons through theporous semiconductor electrode toward the conducting substrate and back reaction of electrons tor
With the shortage of fossil energy,the research of new energies which can be used as the substitutes for the fossil energy have become more and more urgent.Hydrogen energy is clean and considered to b
单斜相BiVO4因其具有可见光吸收能力以及稳定的化学性质等优点,成为最具潜力的光电催化材料之一.然而,其光电解水能力仍受限于易复合的电子一空穴对以及缓慢的水氧化动力学过程.研究表明,金属表面等离子共振(SPR)效应可以提高半导体内部电子一空穴分离效率[1],并且利用金属SPR效应可以提升半导体对水的氧化能力[2].
Owing to the increasing environmental pollution and the limited fossil fuel H2-as a renewable,sustainable energy carrier has received much attention.An effective way to produce H2 is the hydrogen evol
高科技和新工业的发展在推动社会进步的同时,也带来了环境污染,生态破坏,资源短缺等问题,毫无疑问,开发绿色可再生能源和解决环境污染问题成为当今化学工作者刻不容缓的任务.其中由于太阳能具有取之不尽,用之不竭等优点,若开发绿色稳定光催化剂并将其用于解决环境污染等问题[1-3],其光电性能的研究必将成为重中之重.
太阳能和燃料电池是实现清洁可持续电能发展的两大关键技术.然而,基于光催化反应将二氧化碳和水转化成碳水化合物或者氢染料,存在反应速率慢和步骤繁琐等问题,很难满足燃料电池的应用要求.针对这一问题,我们探索了一种新的光促降解有机污染物的燃料电池,其原理在光催化降解有机污染物作为阳极燃料同时,利用二氧化锰阴极实现氧还原,产生电能.这一系统实现了光降解有机物与电化学发电的统一,可视为一种情结环境的光催化燃料
光伏发电是太阳能利用的重要方式之一,但只能实现太阳能转化,无法完成能量的储存.目前,光伏电池所产生的电能一般存储于外加的二次电池中,如铅酸电池、锂离子电池等[1].但这样的系统工作时涉及光能一电能一化学能一电能多个能量转换步骤,能量损失大、系统结构庞大复杂、成本高.太阳能的原位转换与储存有利于提高系统的能量转换效率,简化系统结构.因此,研究和开发具有一体化结构的光电化学储能电池受到广泛关注.
鉴于传统石化能源和环境危机的严重性,科学家们把研究重心放在了开发研究能够把太阳能转换成电能的薄膜型光伏器件上,研究了新型的吸收层和窗口层无机半导体材料,以期达到提高光电转换效率的目的.以硫化锑(Sb2S3)为代表的Ⅴ-Ⅵ族A2B3型半导体二元金属硫化物具有优异的光电和热电性能,在光电材料领域应用非常广泛.Sb2S3作为一种p型半导体在可见光和近红外区都具有很高的吸收度(a>103cm-1),带隙值
光电催化水分解(PEC water splitting)是人工光合作用研究的一个重要课题.虽然金属氧(氮)化物材料能够作为光阳极在碱性或酸性体系氧化分解水,但是由于禁带较宽,能带位置不匹配等问题导致光电转化效率较低[1].单晶硅材料由于其禁带宽度窄,价带位置与水氧化电势E(O2/H2O)更为接近,理论上能够获得更高的光电转化效率,但是由于其化学性质较为活泼,在光照下阳极极化过程很容易发生光腐蚀,因
电化学发光是电化学反应引起的化学发光现象.电化学发光分析因而具有电化学分析和化学发光分析的诸多优点,如电化学技术带来的时空可控、重现性好、和部分试剂可重复使用的优点.化学发光的线性范围宽、无背景光和灵敏度高等优点.近几年来,电化学发光分析得到广泛关注和较快的发展.1发展高效的电化学发光体系改善电化学发光分析性能具有重要应用.